The objective of this study is to assess the participation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels in the cardioprotective effects of the Na(+)/H(+) exchanger (NHE-1) blocker cariporide in isolated rat hearts. Regional ischemia was induced by occlusion of left anterior descending coronary artery during 40 min followed by 2-h reperfusion (IC). Cariporide (C, 10 μΜ), or C plus 5-hydroxydecanoate (5-HD, 100 μM, a selective mitoK(ATP) channel inhibitor), or C plus chelerythrine (Chele, 1 μM, a PKC inhibitor), or an opener of mitoK(ATP) channels, diazoxide (Dz, 100 μM) was applied at the onset of reperfusion. Infarct size (IS) and myocardial function were evaluated. The calcium-induced permeability transition pore (mPTP) opening was determined by measuring the light scattering decrease (LSD, a.u.) in isolated mitochondria in the absence and presence of C, C + 5-HD and Dz. IS was 33 ± 2% of the risk area in IC and was significantly diminished by C (15 ± 2%, p < 0.05), which also improved myocardial function [LVDP = 58 ± 5% (IC) vs 80 ± 5% (C)] and blunted LSD [0.80 ± 0.04 (IC) vs 0.51 ± 0.04 (C) a.u.]. 5-HD and Chele were both able to abolish the cardioprotective effects of C on IS. Dz treatment decreased IS and LSD to a similar extent to that produced by C (15 ± 4% and 0.52 ± 0.04 a.u., respectively). The present data suggest that attenuation of mPTP opening after PKC-mediated mitoK(ATP) channel activation is a crucial step for the cardioprotective effects of cariporide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-011-0632-z | DOI Listing |
Acta Pharm Sin B
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFNeuropediatrics
January 2025
Department of Pediatric Cardiology, University of Health Sciences, Tepecik Training and Research Hospital, Izmir, Turkey.
Aim: Duchenne muscular dystrophy (DMD) is the most frequently seen muscular disease in childhood. Cardiac involvement is extremely important in terms of morbidity and mortality in these patients. Different studies have shown that mutations occurring in various exons are cardioprotective or increase cardiac involvement in DMD cases.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFHypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!