In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-011-0379-x | DOI Listing |
J Fungi (Basel)
November 2024
Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
Mol Ecol
January 2025
Department of Biology, Stanford University, Stanford, California, USA.
Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field-derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year.
View Article and Find Full Text PDFEnviron Microbiol
November 2024
School of Life Sciences, University of Warwick, Coventry, UK.
Environ Res
December 2024
Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region of Gansu Province, Lanzhou, China. Electronic address:
Afforestation exerts a profound impact on soil fungal communities, with the nature and extent of these changes significantly influenced by the specific tree species selected. While extensive research has addressed the aboveground ecological outcomes of afforestation, the nuanced interactions between tree species and soil fungal dynamics remain underexplored. This study investigated the effects of afforestation with Caragana microphylla (CMI), Populus simonii (PSI), and Pinus sylvestris var.
View Article and Find Full Text PDFFront Microbiol
October 2024
Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!