A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The radical mechanism of cobalt(II) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding. | LitMetric

The radical mechanism of cobalt(II) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding.

Dalton Trans

Homogeneous and Supramolecular Catalysis group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam.

Published: June 2011

The mechanism of cobalt(II) porphyrin-mediated aziridination of styrene with PhSO(2)N(3) was studied by means of DFT calculations. The computations clearly indicate the involvement of a cobalt 'nitrene radical' intermediate in the Co(II)(por)-catalyzed alkene aziridination. The addition of styrene to this species proceeds in a stepwise fashion via radical addition of the 'nitrene radical'C to the C=C double bond of styrene to form a γ-alkyl radical intermediate D. The thus formed tri-radical species D easily collapses in an almost barrierless ring closure reaction (TS3) to form the aziridine, thereby regenerating the cobalt(II) porphyrin catalyst. The radical addition of the 'nitrene radical'C to the olefin (TS2) proceeds with a comparable barrier as its formation (TS1), thus providing a good explanation for the first order kinetics in both substrates and the catalyst observed experimentally. Formation of C is clearly accelerated by stabilization of C and TS1 via hydrogen bonding between the S=O and N-H units. The computed radical-type mechanism agrees well with all available mechanistic and kinetic information. The computed free energy profile readily explains the superior performance of the Co(II)(porAmide) system with H-bond donor functionalities over the non-functionalized Co(TPP).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1dt10027kDOI Listing

Publication Analysis

Top Keywords

mechanism cobaltii
8
radical addition
8
addition 'nitrene
8
'nitrene radical'c
8
radical
4
radical mechanism
4
cobaltii porphyrin-catalyzed
4
porphyrin-catalyzed olefin
4
olefin aziridination
4
aziridination cooperative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!