High throughput screens yield small molecule inhibitors of Leishmania CRK3:CYC6 cyclin-dependent kinase.

PLoS Negl Trop Dis

Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.

Published: April 2011

Background: Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites.

Methodology/principal Findings: In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major.

Conclusions/significance: The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071374PMC
http://dx.doi.org/10.1371/journal.pntd.0001033DOI Listing

Publication Analysis

Top Keywords

high throughput
16
leishmania crk3cyc6
12
leishmania
9
throughput screens
8
small molecule
8
molecule inhibitors
8
cyclin-dependent kinase
8
leishmania species
8
protein kinase
8
kinase complex
8

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Background: Historically, soil-transmitted helminth (STH) control and prevention strategies have relied on mass drug administration efforts targeting preschool and school-aged children. While these efforts have succeeded in reducing morbidity associated with STH infection, recent modeling efforts have suggested that expanding intervention to treatment of the entire community could achieve transmission interruption in some settings. Testing the feasibility of such an approach requires large-scale clinical trials, such as the DeWorm3 cluster randomized trial.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!