In many temperate plant species, prolonged cold treatment, known as vernalization, is one of the most critical steps in the transition from the vegetative to the reproductive stage. In contrast to recent advances in understanding the molecular basis of vernalization in Arabidopsis non-vernalization mutants or the spring growth habits of cereal crops such as wheat and barley, natural variations in winter growth habits and their geographic distribution are poorly understood. We analyzed varietal variation and the geographic distribution of the degree of vernalization requirements in germplasms of domesticated barley and wild barley collections. We found a biased geographic distribution of vernalization requirements in domesticated barley: Western regions were strongly associated with a higher degree of spring growth habits, and the extreme winter growth habits were localized to Far Eastern regions including China, Korea and Japan. Both wild accessions and domesticated landraces, the regions of distribution of which overlapped each other, mainly belonged to the moderate class of winter growth habit. As a result of quantitative evaluations performed in this study, we provide evidence that the variation in the degree of winter growth habit in recombinant inbred lines was controlled by quantitative trait loci including three vernalization genes (VRN1, VRN2 and VRN3) that account for 37.9% of the variation in vernalization requirements, with unknown gene(s) explaining the remaining two-thirds of the variation. This evidence implied that the Far Eastern accessions might be a genetically differentiated group derived for an evolutionary reason, resulting in their greater tendency towards a winter growth habit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcr046 | DOI Listing |
Cancers (Basel)
January 2025
Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany.
Objectives: The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley dose ratio (PVDR) on tumor regrowth.
Methods: A549, a human non-small-cell lung cancer cell line, was implanted subcutaneously into the hind leg of female CD1 mice.
Plants (Basel)
January 2025
AirTech UAV Solutions Inc., Inverary, ON K0H 1X0, Canada.
Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Integrated Crop Production Research Unit, Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco.
(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy.
The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), OT Gatersleben, Corrensstraße 3, 06466 Seeland, Germany.
Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!