A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strength of response suppression to distracter stimuli determines attentional-filtering performance in primate prefrontal neurons. | LitMetric

Strength of response suppression to distracter stimuli determines attentional-filtering performance in primate prefrontal neurons.

Neuron

Cognitive Neurophysiology Laboratory, Department of Physiology, McGill University, Montréal, QC H3G1Y6, Canada.

Published: April 2011

Neurons in the primate dorsolateral prefrontal cortex (dlPFC) filter attended [corrected] targets distinctly from distracters through their response rates. The extent to which this ability correlates with the organism's performance, and the neural processes underlying it, remain unclear. We trained monkeys to attend to a visual target that differed in rank along a color-ordinal scale from that of a distracter. The animals' performance at focusing attention on the target and filtering out the distracter improved as ordinal distance between the stimuli increased. Importantly, dlPFC neurons also improved their filtering performance with increasing ordinal target-distracter distance; they built up their response rate in anticipation of the target-distracter onset, and then units encoding target representations increased their firing rate by similar amounts, whereas units encoding distracter representations gradually suppressed their rates as the interstimulus ordinal distance increased. These results suggest that attentional-filtering performance in primates relies upon dlPFC neurons' ability to suppress distracter representations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2011.02.041DOI Listing

Publication Analysis

Top Keywords

attentional-filtering performance
8
ordinal distance
8
units encoding
8
distracter representations
8
distracter
5
performance
5
strength response
4
response suppression
4
suppression distracter
4
distracter stimuli
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!