Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurons of the reticular thalamus (RT) display oscillatory burst discharges that are believed to be critical for thalamocortical network oscillations related to absence epilepsy. Ca²+-dependent mechanisms underlie such oscillatory discharges. However, involvement of high-voltage activated (HVA) Ca²+ channels in this process has been discounted. We examined this issue closely using mice deficient for the HVA Ca(v)2.3 channels. In brain slices of Ca(v)2.3⁻/⁻, a hyperpolarizing current injection initiated a low-threshold burst of spikes in RT neurons; however, subsequent oscillatory burst discharges were severely suppressed, with a significantly reduced slow afterhyperpolarization (AHP). Consequently, the lack of Ca(v)2.3 resulted in a marked decrease in the sensitivity of the animal to γ-butyrolactone-induced absence epilepsy. Local blockade of Ca(v)2.3 channels in the RT mimicked the results of Ca(v)2.3⁻/⁻ mice. These results provide strong evidence that Ca(v)2.3 channels are critical for oscillatory burst discharges in RT neurons and for the expression of absence epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2011.02.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!