We investigated the in vitro production of the antimicrobial peptide hepcidin by cells of the innate immune system that harbor Mycobacterium tuberculosis. Stimulation of mouse lung macrophages with M. tuberculosis or IFN-γ + M. tuberculosis induced hepcidin mRNA. In human alveolar A549 epithelial cells, lipoglycans of M. tuberculosis, in particular mannose-capped lipoarabinomannan and phosphatidyl-myo-inositol mannosides, were strong inducers of hepcidin mRNA. In mouse dendritic cells, hepcidin mRNA was increased by subcellular fractions and culture filtrate proteins of M. tuberculosis and by TLR2 and TLR4 agonists, but not by TLR9 agonists, IL-1α, IL-6 or TNF-α. Flow cytometry evaluation of human peripheral blood mononuclear cells demonstrated that CD11c(+) myeloid dendritic cells stimulated with killed M. tuberculosis or live M. bovis BCG produced hepcidin. The production of the antimicrobial peptide hepcidin by cells that interact with M. tuberculosis suggests a host defense mechanism against mycobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tube.2011.03.003 | DOI Listing |
Viruses
December 2024
Department of Medicine & State Key Laboratory of Liver Research, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China.
Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.
View Article and Find Full Text PDFViruses
December 2024
APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland.
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.
View Article and Find Full Text PDFViruses
December 2024
Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia.
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range.
View Article and Find Full Text PDFViruses
November 2024
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.
View Article and Find Full Text PDFViruses
November 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada.
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!