Production and partial purification of membrane proteins using a liposome-supplemented wheat cell-free translation system.

BMC Biotechnol

Cell-Free Science and Technology Research Center and the Venture Business, Laboratory, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime 790-8577, Japan.

Published: April 2011

Background: Recently, some groups have reported on cell-free synthesis of functional membrane proteins (MPs) in the presence of exogenous liposomes (liposomes). Previously, we reported synthesis of a functional AtPPT1 plant phosphate transporter that was associated with liposomes during translation. However, it is unclear whether or not lipid/MP complex formation is common to all types of MPs in the wheat cell-free system.

Results: AtPPT1 was synthesized using a wheat cell-free system with or without liposomes. AtPPT1 synthesized with liposomes showed high transport activity, but the activity of AtPPT1 synthesized without liposomes was less than 10% activity of that with liposomes. To test whether co-translational association with liposomes is observed in the synthesis of other MPs, we used 40 mammalian MPs having one to 14 transmembrane domains (TMDs) and five soluble proteins as a control. The association rate of all 40 MPs into liposomes was more than 40% (mean value: 59%), while that of the five soluble proteins was less than 20% (mean value: 12%). There were no significant differences in association rate among MPs regardless of the number of TMDs and synthesis yield. These results indicate that the wheat cell-free system is a highly productive method for lipid/MP complex formation and is suitable for large-scale preparation. The liposome association of green fluorescent protein (GFP)-fusion MPs were also tested and recovered as lipid/MP complex after floatation by Accudenz density gradient ultracentrifugation (DGU). Employment of GFP-MPs revealed optimal condition for Accudenz floatation. Using the optimized Accudenz DGU condition, P2RX4/lipid complexes were partially purified and detected as a major band by Coomassie Brilliant Blue (CBB)-staining after SDS-PAGE.

Conclusion: Formation of lipid/AtPPT1 complex during the cell-free synthesis reaction is critical for synthesis of a functional MP. The lipid/MP complex during the translation was observed in all 40 MPs tested. At least 29 MPs, as judged by their higher productivity compared to GFP, might be suitable for a large-scale preparation. MPs synthesized by this method form lipid/MP complexes, which could be readily partially purified by Accudenz DGU. Wheat cell-free protein synthesis in the presence of liposomes will be a useful method for preparation of variety type of MPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090341PMC
http://dx.doi.org/10.1186/1472-6750-11-35DOI Listing

Publication Analysis

Top Keywords

wheat cell-free
20
lipid/mp complex
16
synthesis functional
12
atppt1 synthesized
12
mps
11
liposomes
10
membrane proteins
8
cell-free synthesis
8
complex formation
8
cell-free system
8

Similar Publications

Article Synopsis
  • * The bacterial solution and cell-free supernatant derived from SF416 demonstrated notable preventive effects against the blight, achieving efficacies of 45.1% and 34.18%, respectively, while also showing some therapeutic effects.
  • * Genomic analysis of SF416 revealed genes related to motility, cold and heat shock proteins, antibiotic resistance, and growth promotion, along with gene clusters that produce phenazine compounds linked to its antagonistic abilities against the bacterial pathogen.
View Article and Find Full Text PDF

The translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing.

View Article and Find Full Text PDF

The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli.

View Article and Find Full Text PDF

In drug discovery and pharmacological research, early identification of target molecules for compounds with pharmacological effects is crucial. However, this process often requires significant effort and can be rate-limiting, thereby slowing down research progress. This paper introduces a simplified and rapid method for quick screening of binding compounds or proteins.

View Article and Find Full Text PDF

Application of a Cell-Free Synthetic Biology Platform for the Reconstitution of Teleocidin B and UK-2A Precursor Biosynthetic Pathways.

ACS Synth Biol

November 2024

Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States.

Article Synopsis
  • Researchers successfully used a cell-free protein synthesis (CFPS) system derived from tobacco to recreate the teleocidin biosynthetic pathway, yielding significant production levels of teleocidin B-3.
  • They discovered a key interaction between two proteins, TleA and MbtH, which played a role in this biosynthesis.
  • Additionally, they developed a method for producing UK-2 diol, a precursor to the valuable UK-2A compound, by reconstructing a complex pathway with ten proteins in a wheat germ CFPS system, showcasing the potential of plant CFPS systems for biosynthetic research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!