Tissue transglutaminase (TG2) activity has been implicated in inflammatory disease processes such as Celiac disease, infectious diseases, cancer, and neurodegenerative diseases, such as Huntington's disease. Furthermore, four distinct biochemical activities have been described for TG2 including protein crosslinking via transamidation, GTPase, kinase and protein disulfide isomerase activities. Although the enzyme plays a complex role in the regulation of cell death and autophagy, the molecular mechanisms and the putative biochemical activity involved in each is unclear. Therefore, the goal of the present study was to determine how TG2 modulates autophagy and/or apoptosis and which of its biochemical activities is involved in those processes. To address this question, immortalized embryonic fibroblasts obtained from TG2 knock-out mice were reconstituted with either wild-type TG2 or TG2 lacking its transamidating activity and these were subjected to different treatments to induce autophagy or apoptosis. We found that knock out of the endogenous TG2 resulted in a significant exacerbation of caspase 3 activity and PARP cleavage in MEF cells subjected to apoptotic stimuli. Interestingly, the same cells showed the accumulation of LC3 II isoform following autophagy induction. These findings strongly suggest that TG2 transamidating activity plays a protective role in the response of MEF cells to death stimuli, because the expression of the wild-type TG2, but not its transamidation inactive C277S mutant, resulted in a suppression of caspase 3 as well as PARP cleavage upon apoptosis induction. Additionally, the same mutant was unable to catalyze the final steps in autophagosome formation during autophagy. Our findings clearly indicate that the TG2 transamidating activity is the primary biochemical function involved in the physiological regulation of both apoptosis and autophagy. These data also indicate that TG2 is a key regulator of cross-talk between autophagy and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-011-0899-x | DOI Listing |
Int J Mol Sci
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Homogeneous antibody-drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed.
View Article and Find Full Text PDFOrg Lett
November 2024
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
A metal-free and mild cleavage of tertiary -methoxybenzyl amides (PMB -amide) under photoredox conditions is developed using Mes-Acr-PhBF and Selectfluor to activate the electron-rich benzylic C-H bond of the PMB moiety. The resulting acyl fluoride intermediate is versatile and facilitates a one-pot transamidation of the PMB -amide. The value of this protocol is highlighted by performing the chemoselective activation of the PMB -amide in bifunctional molecules containing more reactive functionalities than the amide.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada.
Transglutaminase enzymes catalyze Ca- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies.
View Article and Find Full Text PDFCell Rep
August 2024
Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China. Electronic address:
Biosci Rep
August 2024
Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A.
Transglutaminase 2 (TGM2) has been known as a well-characterized factor regulating the progression of multiple types of cancer, due to its multifunctional activities and the ubiquitous signaling pathways it is involved in. As a member of the transglutaminase family, TGM2 catalyzes protein post-translational modifications (PTMs), including monoaminylation, amide hydrolysis, cross-linking, etc., through the transamidation of variant glutamine-containing protein substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!