Identification and functional characterization of a putative 17β-hydroxysteroid dehydrogenase 12 in abalone (Haliotis diversicolor supertexta).

Mol Cell Biochem

Life Sciences Division, Graduate School at Shenzhen, Campus of Tsinghua University, Shenzhen, Room 304, Building L, University Town, Guangdong Province, People's Republic of China.

Published: August 2011

The 17β-hydroxysteroid dehydrogenases (17β-HSDs) are key enzymes in the downstream process of steroid hormone biosynthesis. To date, relatively little is known about the role of 17β-HSDs in marine gastropods. In the present study, a putative cDNA sequence encoding type 12 17β-HSD (17β-HSD-12) was identified in abalone (Haliotis diversicolor supertexta). The full-length cDNA was 1,978 bp, including an open reading frame (ORF) of 963 bp that encoded a protein of 321 amino acids. Comparative structural analysis revealed that abalone 17β-HSD-12 shared 39.8-42.8% amino acid identity with other 17β-HSD-12 homologues and that the functional domains were well conserved. Phylogenetic analysis revealed that abalone 17β-HSD-12 belonged to the short-chain dehydrogenases/reductases (SDRs) family. Functional analysis following transient transfection of the ORF in human embryonic kidney-293 (HEK-293) cells indicated that abalone 17β-HSD-12 had the ability to convert estrone (E1) into estradiol (E2). Expression analysis in vivo demonstrated that abalone 17β-HSD-12 was differentially expressed during the three reproductive stages (pre-spawning, spawning, and post-spawning). These results indicate that abalone 17β-HSD-12 is an SDR family member with a key role in steroidogenesis during the reproductive period.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-011-0811-8DOI Listing

Publication Analysis

Top Keywords

abalone 17β-hsd-12
20
abalone haliotis
8
haliotis diversicolor
8
diversicolor supertexta
8
analysis revealed
8
revealed abalone
8
abalone
7
17β-hsd-12
7
identification functional
4
functional characterization
4

Similar Publications

Population Genetics of in China Inferred Through EST-SSR Markers.

Genes (Basel)

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Background/objectives: The Pacific abalone originated in cold waters and is an economically important aquaculture shellfish in China. Our goal was to clarify the current status of the genetic structure of Pacific abalone in China.

Methods: In this study, eighteen polymorphic EST-SSR loci were successfully developed based on the hemolymph transcriptome data of Pacific abalone, and thirteen highly polymorphic EST-SSR loci were selected for the genetic variation analysis of the six populations collected.

View Article and Find Full Text PDF

(1) Background: Animal growth is a complex process, involving the coordination of a wide variety of genes, non-coding RNAs, and pathways. Circular RNAs (circRNAs) belong to a novel class of functional non-coding RNAs (ncRNAs). They have a distinctive ring structure and are involved in various biological processes, including the proliferation, differentiation, and apoptosis of muscle cells.

View Article and Find Full Text PDF

Ten Candidate Genes Were Identified to Be Associated with the Great Growth Differentiation in the Three-Way Cross Hybrid Abalone.

Animals (Basel)

January 2025

State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

Abalone is an economically important mollusk, whose slow growth has impeded the recovery of its wild populations and development of aquaculture. The three-way cross hybrid abalone ((♀ × ♂)♀ × ♂, DF × SS) demonstrated notable diversity in growth traits across the population with genetic differentiation, offering a model for exploring the molecular mechanisms of abalone growth. In this study, a total of 89 SNPs and 97 candidate genes were identified to be associated with growth-related traits of abalone using whole-genome resequencing and a genome-wide association study (GWAS) analysis.

View Article and Find Full Text PDF

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Deleted in malignant brain tumors 1 (DMBT1) gene relate to immune priming and phagocytosis modulation in the small abalone Haliotis diversicolor.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:

The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!