The ICN photodissociation reaction is the prototype system for understanding energy disposal and curve crossing in small molecule bond-breaking. The wide knowledge base on this reaction in the gas phase makes it an excellent test case to explore and understand the influence of a liquid solvent on the photo-induced reaction dynamics. Molecular dynamics simulations that include surface-hopping have addressed numerous aspects of how the solvent should influence non-adiabatic transitions and energy flow and ultimately determine product branching for this reaction system. In this paper, we report femtosecond transient absorption work directly combined with new molecular dynamics simulations that make direct connection with the spectroscopic observables. The full spectral evolution after initiating ICN photodissociation at 266 nm in water and ethanol is recorded with unprecedented time resolution, fast enough to see the nascent products emerge before interacting with the solvent cage. Use of a 266 nm pump maximizes the probability of subsequent caging on the upper diabat while launching large rotational energy release for trajectories emerging on the lower diabat. The 2D dataset yields a map of the different products and how they interconvert. In particular, information on the branching ratio and spectral evolution of the product bands is revealed as the products relax their electronic and rotational degrees of freedom. An evolution from rotationally hot gas-phase like CN (sharp band, at 390 nm) to equilibrated and solvated CN radicals (broad, at 326 nm in water and 415 nm in ethanol) is clearly observed in both solvents, and signals assignable to I* are also captured. The non-adiabatic molecular dynamics simulations focus on identifying when trajectories curve cross, filtering the trajectory ensemble into spectroscopically distinct sub-populations and analyzing the rotational energy for the CN product population. The experimental results, taken together with the MD simulations, establish the initial surface crossing probability and suggest multiple passes through the curve crossing region determine the final product yields and provide a source of freshly torqued CN radicals that continues to top up the population of rotationally hot photoproduct over the first few picoseconds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp20252a | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFMol Divers
January 2025
Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!