We examine the evolution in phase space of an N-point signal, produced and sensed at finite arrays transverse to a planar waveguide within the framework of the finite quantization of geometric optics. We use the Kravchuk coherent states provided by the finite oscillator model to evince the nonlinear transformations that elliptic-profile waveguides produce on phase space by means of the SO(3) Wigner function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.28.000641 | DOI Listing |
Nat Biotechnol
January 2025
Department of Automation, Tsinghua University, Beijing, China.
Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:
Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physiology and Biochemistry, Faculty of Physical Education and Sport Science, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland.
The purpose of this study was to determine the effective warm-up protocol using an added respiratory dead space (ARDS) 1200 ml volume mask to determine hypercapnic conditions, on the swimming velocity of the 50 m time trial front crawl. Eight male members of the university swimming team, aged 19-25, performed three different warm-up protocols: 1) standardized warm-up in water (WUCON); 2) hypercapnic warm-up in water (WUARDS); 3) hypercapnic a 20-minute transition phase on land, between warm-up in water and swimming test (RE-WUARDS). The three warm-up protocols were implemented in random order every 7th day.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.
Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!