The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133126 | PMC |
http://dx.doi.org/10.1128/JB.00115-11 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFACS Synth Biol
January 2025
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.
View Article and Find Full Text PDFMetab Eng
December 2024
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. Electronic address:
Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.
View Article and Find Full Text PDFFront Microbiol
November 2024
Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the promoter (P), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!