A computer-based technique for automated spot detection in proteomics images.

IEEE Trans Inf Technol Biomed

Realtime Systems and Image Analysis Group, Department of Informatics and Telecommunications, University of Athens, 15784 Athens,Greece.

Published: July 2011

This paper introduces a novel computer-based technique for automated detection of protein spots in proteomics images. The proposed technique is based on the localization of regional intensity maxima associated with protein spots and is formulated so as to ignore rectangular-shaped streaks, minimize the detection of false negatives, and allow the detection of multiple overlapping spots. Regional intensity constraints are imposed on the localized maxima in order to cope with the presence of noise and artifacts. The experimental evaluation of the proposed technique on real proteomics images demonstrates that it: 1) achieves a predictive value ( PV) and detection sensitivity (DS ) which exceed 90%; 2) outperforms Melanie software package in terms of PV , specificity, and DS; 3) ignores artifacts; 4) distinguishes multiple overlapping spots; 5) locates spots within streaks; and 6) is automated and efficient.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TITB.2011.2140327DOI Listing

Publication Analysis

Top Keywords

proteomics images
12
computer-based technique
8
technique automated
8
protein spots
8
proposed technique
8
regional intensity
8
multiple overlapping
8
overlapping spots
8
detection
5
spots
5

Similar Publications

High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning.

Cell

January 2025

Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Despite recent advances in imaging- and antibody-based methods, achieving in-depth, high-resolution protein mapping across entire tissues remains a significant challenge in spatial proteomics. Here, we present parallel-flow projection and transfer learning across omics data (PLATO), an integrated framework combining microfluidics with deep learning to enable high-resolution mapping of thousands of proteins in whole tissue sections. We validated the PLATO framework by profiling the spatial proteome of the mouse cerebellum, identifying 2,564 protein groups in a single run.

View Article and Find Full Text PDF

The blood-brain barrier and the distinct brain immunology provide challenges in translating commonly used chemotherapeutics to treat intracranial tumors. Previous reports suggest anti-tumoral effects of antipsychotics, encouraging investigations into potential treatment effects of neuroleptics on brain metastases. For the first time, the therapeutic potential of the antipsychotic drug clozapine in treating melanoma brain metastases (MBM) was investigated using three human MBM cell lines.

View Article and Find Full Text PDF

Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.

View Article and Find Full Text PDF

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!