Are structural proteins in insect cuticles dominated by intrinsically disordered regions?

Insect Biochem Mol Biol

The Collstrop Foundation, The Royal Danish Academy of Sciences and Letters, H.C. Andersens Boulevard 35, 1553 Copenhagen V, Denmark.

Published: August 2011

Fifty years ago it was concluded that the highly elastic cuticular protein, resilin, is devoid of secondary structure and that the peptide chains are randomly coiled and easily and reversibly deformed. These properties indicate that resilin is an intrinsically disordered protein and suggest that also other cuticular proteins may contain disordered regions. Amino acid sequences are now available for cuticular proteins from many insect species, and several programs have been developed to predict the probability for a given protein to contain disordered regions. The present paper describes the results obtained when the predictors are applied to various types of cuticular proteins from several insects. The results suggest that most cuticular proteins contain shorter or longer disordered regions, and the possible functions for such regions are briefly discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2011.03.015DOI Listing

Publication Analysis

Top Keywords

cuticular proteins
16
disordered regions
12
proteins insect
8
intrinsically disordered
8
disordered
5
cuticular
5
structural proteins
4
insect cuticles
4
cuticles dominated
4
dominated intrinsically
4

Similar Publications

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Differential genome-wide expression profiles in response to high temperatures in the two body-color morphs of the pea aphid.

Int J Biol Macromol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:

Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PARs and PAGs increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.

View Article and Find Full Text PDF

Proteomic Analysis of Single Hairs.

Methods Mol Biol

December 2024

University of California - Davis, Department of Environmental Toxicology, Davis, CA, USA.

Hair is a ubiquitous and robust mammalian tissue with biological, clinical, forensic, social, and economic significance. The hair shaft proteome reflects both structural proteins, dominated by cuticular intermediate filament keratins and associated proteins, and proteins involved in the final cellular processes of terminally differentiating corneocytes prior to cornification. These distinct biological processes involve cell maintenance, biosynthesis, senescence, and xenobiotic response.

View Article and Find Full Text PDF

Waxy cuticle covers plant aerial organs and protects plants against environmental challenges. Although improved cuticle-associated traits are aimed at the wheat breeding programs, the mechanism governing wheat cuticular wax biosynthesis remains to be elucidated. Herein, wheat WW domain-containing protein TaCFL1 is characterized as a negative regulator of wax biosynthesis.

View Article and Find Full Text PDF

Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5.

Plant Cell Environ

December 2024

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.

Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!