Single-label time-resolved luminescence assay for estrogen receptor--ligand binding.

Anal Biochem

Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.

Published: August 2011

Homogeneous luminescence-based microplate assays are desirable in high-throughput screening of new nuclear receptor regulators. Time-resolved fluorescence resonance energy transfer (TR-FRET) assays provide high sensitivity due to low background signal. The TR-FRET concept requires labeling of both ligand and receptor, making the assay format and its development relatively expensive and complex compared with single-label methods. To overcome the limitations of the multilabel methods, we have developed a single-label method for estrogen receptor (ER)-ligand binding based on quenching resonance energy transfer (QRET), where estradiol labeled with luminescent europium(III) chelate (Eu-E(2)) is quenched using soluble quencher molecules. The luminescence signal of Eu-E(2) on binding to full-length ER is protected from quenching while increasing competitor concentrations displace Eu-E(2) from the receptor, reducing the signal. The QRET method was paralleled with a commercial fluorescence polarization (FP) assay. The measured signal-to-background (S/B) values for estradiol, estrone, fulvestrant, and tamoxifen obtained for the QRET assay (5.8-9.2) were clearly higher than the S/B values for the FP assay (1.3-1.5). A K(d) value of 30nM was calculated for binding of Eu-E(2) to ER from a saturation binding isotherm. The QRET method provides an attractive new single-label assay format for nuclear receptor ligand screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2011.03.038DOI Listing

Publication Analysis

Top Keywords

nuclear receptor
8
resonance energy
8
energy transfer
8
assay format
8
qret method
8
s/b values
8
assay
6
binding
5
receptor
5
single-label
4

Similar Publications

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!