Pulque is a typical fermented alcoholic beverage of central Mexico, produced from the nectar of maguey agave plants. Production systems are largely artisanal, with inadequate hygiene conditions and exposure to multiple contamination sources. No data exist on pulque microbiological safety and the behavior of pathogenic microorganisms in agave nectar and pulque. An initial trial was done of the behavior of Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Shigella flexneri and Shigella sonnei during fermentation of nectar from a single producer, nectar mixture from different producers, and seed pulque. A second trial simulating artisanal pulque production was done by contaminating fresh nectar with each of the five strains, storing at 22°C for 14 h, adding seed pulque, and fermenting until pulque was formed. During incubation at 16 or 22°C in the first trial, all the pathogenic strains multiplied in both the single producer nectar and the nectar mixture, reaching maximum concentrations at 12 h. Strains concentration then decreased slowly. In the seed pulque, the strains did not multiply and tended to die. In the second trial, all strains increased concentration from 0.7 to 1.6 log at 22°C, and from 0.5 to 1.1 at 16°C in the first 14 h. After addition of seed pulque, they were quickly deactivated until none was detected in the final product. The results suggest that the potential risk to consumers of contracting any of the five tested pathogenic bacterial strains from pulque is low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-10-382 | DOI Listing |
Food Res Int
December 2024
School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
This study investigates the impact of liquid state fermentation on the key flavor compounds and microbial community structure in Chinese rice wine brewed from five different raw materials: buckwheat, sorghum, japonica rice, glutinous rice, and black rice. Using HS-SPME-GC-MS and HPLC, the volatile compounds were analyzed across various grain liquefaction methods, detecting 82 volatiles, including esters, alcohols, aldehydes, and acids. The concentration of flavor compounds such as esters, amino acids, phenolic acids, and organic acids varied significantly depending on the raw material used.
View Article and Find Full Text PDFFood Res Int
December 2024
College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China. Electronic address:
Stacking fermentation is typical process of Maotai-flavor Baijiu and microbial composition determine content of flavors. To date, the knowledge on the driving force of microbial composition was as yet unknown. Since quorum sensing molecule (QSM) plays an important role in modifying microbial interactions.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
Sci Rep
November 2024
Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, Tartu, 51006, Estonia.
Food Chem
February 2025
Food Colour & Quality Laboratory, Dept. Nutrition & Food Science. Facultad de Farmacia. Universidad de Sevilla, 41012-Sevilla, Spain.
The colour of red wine is due to the presence of anthocyanins and their derived pigments, with malvidin-3-O-glucoside being the most predominant. Due to their chemical conformation, anthocyanins are susceptible to several conditions and have limited stability. Through copigmentation processes, anthocyanins can interact non-covalently with other molecules to enhance their stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!