The spatial presentation of soluble growth factors, immobilized extracellular matrix molecules, as well as matrix rigidity, plays an important role in directed and guided cell migration. Synthetic hydrogel scaffolds offer the ability to systematically introduce gradients of these factors contributing to our understanding of how the 3D arrangement of biochemical and mechanical cues influence cell behavior. Using a novel photopolymerization technique, perfusion-based frontal photopolymerization (PBFP), we have engineered poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds with gradients of mechanical properties and immobilized biofunctionality. The controlled delivery of a buoyant photoinitiator, eosin Y, through a glass frit filter results in the formation and subsequent propagation of a polymer reaction front that is self-sustained and able to propagate through the monomeric mixture. Propagation of this front results in monomer depletion, leading to variations in cross-linking, as well as spatial gradients of elastic modulus and immobilized concentrations of the YRGDS cell adhesion ligand within PEGDA hydrogels. Furthermore, the magnitudes of the resulting gradients are controlled through alterations in polymerization conditions. Preliminary in vitro cell-culture studies demonstrate that the gradients generated stimulate directed 2D cell growth on the surface of PEGDA hydrogels. By day 14, fibroblast aggregates spread roughly twice as far in the direction parallel to the slope of the gradient as compared to the perpendicular direction. The presented technique has great potential in controlling gradients of mechanical properties and immobilized biofunctionality for directing and guiding 3D cell behavior within tissue-engineered scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/092050611X566450 | DOI Listing |
Tomography
September 2024
Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
Background: Postoperative cognitive dysfunction (POCD) is a common complication of the central nervous system in elderly surgical patients. Structural MRI and arterial spin labelling (ASL) techniques found that the grey matter volume and cerebral perfusion in some specific brain areas are associated with the occurrence of POCD, but the results are inconsistent, and the predictive accuracy is low. We hypothesised that the combination of cortical grey matter volumetry and cerebral blood flow yield higher accuracy than either of the methods in discriminating the elderly individuals who are susceptible to POCD after abdominal surgery.
View Article and Find Full Text PDFEmerging evidence suggests that advanced neuroimaging modalities such as arterial spin labelling (ASL) might have prognostic utility for pediatric concussion. This study aimed to: 1) examine group differences in global and regional brain perfusion in youth with concussion or orthopedic injury (OI) at 72 h and 4 weeks post-injury; 2) examine patterns of abnormal brain perfusion within both groups and their recovery; 3) investigate the association between perfusion and symptom burden within concussed and OI youths at both time-points; and 4) explore perfusion between symptomatic and asymptomatic concussed and OI youths. Youths ages 10.
View Article and Find Full Text PDFInsights Imaging
November 2023
Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China.
Background: The effectiveness of surgical interventions, whether direct or indirect, for Moyamoya disease (MMD) remains controversial. This study aims to investigate CT perfusion (CTP) as an objective method to evaluate the outcomes of different surgical modalities for adult MMD.
Methods: The clinical and imaging data of 41 patients who underwent superficial temporal artery-middle cerebral artery (STA-MCA) bypass and 43 who received encephaloduroarteriosynangiosis (EDAS) were retrospectively analyzed.
Front Aging Neurosci
August 2021
Department of Radiology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Widespread impairments in white matter and cerebrovascular integrity have been consistently implicated in the pathophysiology of patients with small vessel disease (SVD). However, the neural circuit mechanisms that underlie the developing progress of clinical cognitive symptoms remain largely elusive. Here, we conducted cross-modal MRI scanning including diffusion tensor imaging and arterial spin labeling in a cohort of 113 patients with SVD, which included 74 patients with vascular mild cognitive impairment (vMCI) and 39 patients without vMCI symptoms, and hence developed multimode imaging-based machine learning models to identify markers that discriminated SVD subtypes.
View Article and Find Full Text PDFJ Neural Eng
June 2021
Inbrain Lab, Department of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, Brazil.
. Semantic verbal fluency (SFV) is a cognitive process that engages and modulates specific brain areas related to language comprehension and production, decision making, response inhibition, and memory retrieval. The impairment of the brain network responsible for these functions is related to various neurological conditions, and different strategies have been proposed to assess SVF-related deficits in such diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!