Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Retrograde transport between endosomes and the trans-Golgi network (TGN) is essential for the recycling of membrane proteins which are involved in a range of biological processes. A variety of machinery components have been identified at the TGN which regulate endosome-to-TGN transport, including small G proteins, SNAREs, tethering factors and scaffold molecules. The challenge is to understand how these regulatory components orchestrate not only the specific docking and fusion of retrograde membrane carriers with the TGN, but also maintain the integrity of this highly dynamic compartment to ensure efficient delivery and export of cargo. Here we review recent advances in defining the form and function of tethers and scaffolds in the regulation of the retrograde transport pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0854.2011.01185.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!