Previous studies of hypersaline environments have revealed the dominant presence of melanized yeast-like fungi and related Cladosporium spp. In this study, we focused on the genera Aspergillus and Penicillium and their teleomorphic forms. From oligotrophic and eutrophic hypersaline waters around the world, 60 different species were identified, according to their morphological characteristics and extrolite profiles. For the confirmation of five new species, additionally, sequence analysis of the internal transcribed spacer region, the partial large subunit-rDNA and the partial β-tubulin gene was performed. The species Aspergillus niger, Eurotium amstelodami and Penicillium chrysogenum were detected with the highest frequencies at all of the sampled sites; thus, they represent the pan-global stable mycobiota in hypersaline environments. Possible candidates were also Aspergillus sydowii and Eurotium herbariorum, as they were quite evenly distributed among the sampled sites, and Aspergillus candidus, which was abundant, but more locally distributed. These species and their byproducts can accumulate downstream following evaporation of brine, and they can become entrapped in the salt crystals. Consequently, marine salt used for consumption can be a potential source of food-borne fungi and their byproducts. For example, ochratoxin-A-producing species Penicillium nordicum was recovered from brine, salt and salted meat products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2011.01108.x | DOI Listing |
Water Res
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:
Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA.
The draft genome sequence of sp. strain Wilcox, isolated from produced water, is presented. The genome is 3.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States.
Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Geosciences, Princeton University, Princeton, NJ 08540, United States.
Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080, Alicante, Spain; Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!