The capability to reprogram human somatic cells to induced pluripotent stem cells (iPSCs) has opened a new area of biology and provides unprecedented access to patient-specific iPSCs for drug screening, disease models, and transplantation therapies. Although the process of obtaining iPSC lines is technically simple, reprogramming is a slow and inefficient process consisting of a largely uncharacterized chain of molecular events. To date, researchers have reported a wide range of reprogramming efficiencies, from <0.01% to >1%, depending on the specific reprogramming factors used, the mode of delivery of the reprogramming factors, properties of the starting cells, and culture conditions. We have applied a quantitative polymerase chain reaction methodology, TaqMan Protein Assays to directly quantify the kinetics, and cellular levels of crucial transcription factors during the reprogramming process. Further, we have used the assays to ascertain the threshold levels of reprogramming protein factors required to generate iPSC colonies, to characterize the protein expression signatures of different iPSC lines, and to rapidly identify iPS versus non-iPSC colonies based on expression of pluripotency markers. These data demonstrate that TaqMan Protein Assays can be used as tools to dissect and gain greater understanding of the mechanisms guiding reprogramming and to further characterize individual established iPSC lines.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2011.0032DOI Listing

Publication Analysis

Top Keywords

protein assays
12
ipsc lines
12
quantitative polymerase
8
polymerase chain
8
chain reaction
8
reprogramming
8
reprogramming factors
8
taqman protein
8
protein
5
applications quantitative
4

Similar Publications

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

A Couple-Based Intervention for Chinese Older Adults With Type 2 Diabetes: A Randomized Clinical Trial.

JAMA Netw Open

January 2025

Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Importance: Spousal involvement in diabetes care is recommended theoretically, but effectiveness in clinical settings and among diverse populations is unclear.

Objective: To test the effect of a couple-based intervention among Chinese older patients with type 2 diabetes and their spouses.

Design, Setting, And Participants: This multicenter randomized clinical trial comprised 2 arms: a couple-based intervention arm and an individual-based control.

View Article and Find Full Text PDF

Importance: Influenza vaccination remains the most important intervention to prevent influenza morbidity and mortality among nursing home residents. The additional effectiveness of recombinant influenza vaccine vs standard dose vaccines was demonstrated in outpatient older adults but has not been evaluated in nursing home populations.

Objective: To compare hospitalization rates among residents in nursing homes immunized with a recombinant vs a standard dose egg-based influenza vaccine.

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!