The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi2002482 | DOI Listing |
Soft Matter
January 2025
Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.
View Article and Find Full Text PDFMisfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Department of Cardiology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China.
With a better understanding of the susceptibility to atrial fibrillation (AF) and the thrombogenicity of the left atrium, the concept of atrial cardiomyopathy (ACM) has emerged. The conventional viewpoint holds that AF-associated hemodynamic disturbances and thrombus formation in the left atrial appendage are the primary causes of cardiogenic embolism events. However, substantial evidence suggests that the relationship between cardiogenic embolism and AF is not so absolute, and that ACM may be an important, underestimated contributor to cardiogenic embolism events.
View Article and Find Full Text PDFPRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!