Tautomerism in the ground and excited states of 7-hydroxyquinoline (7HQ) was studied in different solvents using steady-state and lifetime spectroscopic measurements, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Equilibrium between the enol and the keto/zwitterion tautomers exists in 7HQ, which is solvent-dependent. Of the solvents used in this study, only in water does the absorbance spectrum of 7HQ show absorption from both the enol and zwitterion tautomers. In addition, in aqueous media, fluorescence is observed from the zwitterion tautomer only, which is attributed to self-quenching of the enol fluorescence by energy transfer to the ground-state zwitterion tautomer and energetically favorable excited-state proton transfer. Solvation of the hydrogen bonding sites of 7HQ was studied in binary mixtures of 1,4-dioxane and water, and three water molecules were estimated to connect the polar sites and induce intermolecular proton transfer. The results are confirmed by DFT calculations showing that three water molecules are the minimum number required to form a stable solvent wire. Mapping the water density around the polar sites using MD simulations shows well-defined hydrogen bonds around the amino and hydroxyl groups of the enol tautomer and slightly less well-defined hydrogen bonds for the zwitterion tautomer. The presence of three-member water wires connecting the polar centers in 7HQ is evident in the MD simulations. The results point to the unique spectral signatures of 7HQ in water, which make this molecule a potential probe to detect the presence of water in nanocavities of macromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp201649zDOI Listing

Publication Analysis

Top Keywords

zwitterion tautomer
12
water
9
study water
8
7hq studied
8
dft calculations
8
proton transfer
8
three water
8
water molecules
8
polar sites
8
well-defined hydrogen
8

Similar Publications

A review on point mutations via proton transfer in DNA base pairs in the absence and presence of electric fields.

Int J Biol Macromol

October 2024

Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates. Electronic address:

This comprehensive review focuses on spontaneous mutations that may occur during DNA replication, the fundamental process responsible for transferring genetic information. In 1963, Löwdin postulated that these mutations are primarily a result of proton transfer reactions within the hydrogen-bonded DNA base pairs. The single and double proton transfer reactions within the base pairs in DNA result in zwitterions and rare tautomers, respectively.

View Article and Find Full Text PDF

Computational study of the dimerization of glyphosate: mechanism and effect of solvent.

RSC Adv

July 2024

Unité de recherche de Modélisation en Sciences Fondamentales et Didactiques, équipe de Chimie Théorique et Réactivité UR14ES10, Institut Préparatoire aux études d'Ingénieurs d'El Manar, Université de Tunis El Manar B. P. 244 El Manar II 2092 Tunis Tunisia +216 72 593 450 +216 72 593 450 + 216 54744256.

A computational study on the structure and stability of different series of glyphosate (Glyph) dimers comprising nonionized (N) and zwitterionic structures (Z) for neutral monomers, followed by an analysis of energetics of Glyph dimerization process have been performed by means of quantum chemical calculations in different media. Optimized geometries for energy minima, as well as relative potential and free energies of the possible various conformers of each series of Glyph dimer were computed as a function of the medium at B3LYP-D3/6-311++G(2d,2p) level. The solvation model based on density (SMD) is employed for all solution phase computations.

View Article and Find Full Text PDF

Theoretical Insights into N-Glycoside Bond Cleavage of 5-Carboxycytosine by Thymine DNA Glycosylase: A QM/MM Study.

J Phys Chem B

May 2024

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.

Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (S2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack.

View Article and Find Full Text PDF

Fluorescence emission mechanism for the π-conjugated zwitterion 2,4-Bisimidazolylphenol base on ESIPT: A TDDFT theoretical reconsideration.

Spectrochim Acta A Mol Biomol Spectrosc

May 2024

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China. Electronic address:

Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J.

View Article and Find Full Text PDF

The -N-pyridyl-based PCP pincer proligand 3,5-bis(di--butylphosphinomethyl)-2,6-dimethylpyridine (pN-PCP-H) was synthesized and metalated to give the iridium complex (pN-PCP)IrHCl (). In marked contrast with its phenyl-based congeners, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!