Our aim was to evaluate the effect of deep oscillation and biofeedback on Raynaud's phenomenon (RP) secondary to systemic sclerosis (SSc). A prospective randomized study was performed in SSc patients receiving either deep oscillation (n = 10) or biofeedback (n = 8) thrice a week for 4 weeks, or patients were randomized into the waiting group untreated for vasculopathy (n = 10) in time of running the study interventions. Biofeedback resulted in an improvement of RP as determined by score reduction of visual analogue scale compared with patients of the control group (P < 0.05), whereas deep oscillation revealed a tendency for improvement (P = 0.055). The study underlines the beneficial role of physiotherapy for the treatment of SSc-related RP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00296-011-1882-2DOI Listing

Publication Analysis

Top Keywords

deep oscillation
16
raynaud's phenomenon
8
phenomenon secondary
8
secondary systemic
8
systemic sclerosis
8
prospective randomized
8
oscillation biofeedback
8
biofeedback
4
biofeedback deep
4
oscillation
4

Similar Publications

Spatiotemporal network dynamics and structural correlates in the human cerebral cortex in vitro.

Prog Neurobiol

January 2025

Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:

Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.

View Article and Find Full Text PDF

Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions.

View Article and Find Full Text PDF

Terahertz Nanoscopy on Low-Dimensional Materials: Toward Ultrafast Physical Phenomena.

ACS Appl Mater Interfaces

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).

View Article and Find Full Text PDF

Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.

Chaos

January 2025

Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009, Australia.

We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!