Image analysis application for the study of activated sludge floc size during the treatment of synthetic and real fishery wastewaters.

Environ Sci Pollut Res Int

IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Published: September 2011

Background, Aim, And Scope: Fishery wastewater treatment can be compromised due to seasonal production. The use of sequencing batch reactors is not completely successful, despite flexibility being one of the principal advantages. Most research on activated sludge is performed using synthetic wastewater to ensure a stable and constant feed. The current work compared biomass morphology and settling ability using image analysis of synthetic and real fishery wastewaters, with and without NaCl addition.

Results: The final effluent presented higher turbidity for both wastewaters after NaCl addition, and lower SVI values. For synthetic wastewater, NaCl addition led to the total aggregates' area (TA) increase from 1.46 to 2.09 mm(2)/μL, alongside the growth of intermediate aggregates into larger aggregates. The addition of NaCl to the fishery wastewater led to a decrease of the TA from 4.43 to 1.72 mm(2)/μL. The biomass composition decreased in larger and intermediate structures, opposite to the smaller aggregates' area percentage increase.

Discussion: NaCl addition to synthetic wastewater incited flocculation increasing sludge settling ability. A slight aggregate disruption was responsible for a turbidity increase. A strong deflocculation was identified in fishery wastewater with NaCl from the decrease of intermediate and large aggregates. This contrasted with pinpoint flocs release, which increased the turbidity levels. CONCLUSIONS, RECOMMENDATIONS, AND PERSPECTIVES: It could be established that synthetic wastewater biomass flocculation and fishery wastewater biomass deflocculation, observed during 0.5% NaCl experiments, were related to sludge settling and effluent turbidity changes. Furthermore, the biomass changes obtained with synthetic wastewater cannot be extrapolated to fishery wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-011-0496-2DOI Listing

Publication Analysis

Top Keywords

fishery wastewater
20
synthetic wastewater
20
nacl addition
12
wastewater
10
image analysis
8
activated sludge
8
synthetic real
8
real fishery
8
fishery wastewaters
8
settling ability
8

Similar Publications

Utility of integrated papyrus-bivalve for bioremediation of aquaculture wastewater.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Aquaculture generates substantial amount of residual feeds and faecal matter that accumulate in the culture environment and pollute effluent-receiving water, diminishing its ecological functioning. To devise means of treating nutrient-rich aquaculture wastewater, the efficiency of integrated papyrus-bivalve mesocosms in removing nutrients was evaluated. The mesocosms were fed on water (6600 L) from one brood-stock pond and allowed to settle for 2 weeks.

View Article and Find Full Text PDF

Innovative strategies for utilizing microalgae as dual-purpose biofertilizers and phycoremediators in agroecosystems.

Biotechnol Rep (Amst)

March 2025

Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia.

The increasing need for sustainable agricultural practices due to the overuse of chemical fertilizers has prompted interest in microalgae as biofertilizers. This review investigates the potential of microalgae as biofertilizers and phycoremediators within sustainable agroecosystems, addressing both soil fertility and wastewater management. Microalgae provide a dual benefit by absorbing excess nutrients and contaminants from wastewater, generating nutrient-rich biomass that can replace chemical fertilizers and support plant growth.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!