AI Article Synopsis

  • The study highlights the importance of SIRT1 in regulating vascular smooth muscle cell (VSMC) proliferation and migration, which are key processes in vascular diseases.
  • SIRT1 overexpression in mice led to a significant reduction in neointima formation and VSMC proliferation after artery injury.
  • The research suggests that targeting SIRT1 could be a promising strategy for treating vascular diseases due to its inhibitory effects on processes contributing to vascular complications.

Article Abstract

Rationale: Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown.

Objective: The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms.

Methods And Results: A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)-positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-α, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression.

Conclusions: Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.110.237875DOI Listing

Publication Analysis

Top Keywords

neointima formation
20
vsmc proliferation
16
sirt1
12
proliferation migration
12
carotid artery
12
sirt1 overexpression
12
smooth muscle
8
muscle cell
8
vascular diseases
8
artery ligation
8

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

Vessel Wall Histologic Changes in a Porcine Model of Arteriovenous Fistula Stenosis Treated with Percutaneous Transluminal Angioplasty.

J Vasc Interv Radiol

December 2024

Vascular and Interventional Radiology Translational Research Lab, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Article Synopsis
  • The study investigated how different treatments (balloon angioplasty vs. drug-coated balloons) affect the changes in blood vessel tissues following arteriovenous fistula stenosis in pigs with chronic kidney disease.
  • Significant differences in tissue composition were observed, with drug-coated balloons leading to lower neointimal growth and higher endothelial cell counts compared to standard angioplasty.
  • The findings suggest that using drug-coated balloons may improve vessel healing and reduce complications over time, as shown by varied immune cell responses and tissue growth patterns.
View Article and Find Full Text PDF

Introduction: Neointimal hyperplasia is one of the persistent complications after vascular interventions, and is the major cause of treatment failure. Interleukin-33 (IL-33) emerges as a crucial factor in many biological processes and plays an important role in vascular diseases. Adventitial injection is catching attention for its effectiveness and fewer side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!