Background: Treatment with amphotericin B is highly effective in histoplasmosis. Caspofungin has shown good activity against Candida and Aspergillus spp. In vitro studies have demonstrated that Histoplasma capsulatum is inhibited by caspofungin.
Objectives: The purpose of this study was to evaluate the effectiveness of caspofungin in the treatment of histoplasmosis in an animal experimental model.
Methods: Three strains of Histoplasma capsulatum var. capsulatum were used. Treatment started one week post-inoculation and the animals were randomly assigned to six groups: amphotericin B 6mg/Kg/d, caspofungin 2mg/Kg/d, 4mg/Kg/d, 8mg/Kg/d and the other two groups received saline solution and dextrose solution. Blood samples for culture were obtained once a week, from day 7 to 35 post-inoculation. One week after the end of the treatment the animals were sacrificed and spleen cultures were performed.
Results: Blood cultures were negative in all the hamsters which received amphotericin B (100%, P<0.001); those treated with caspofungin and the control animals presented 30 and 32% of positive cultures respectively (P=0.59). Spleen cultures were negative in the animals treated with amphotericin B, while the percentage of positive spleen cultures in the caspofungin groups varied from 25 to 100%, and in the control groups from 35 to 94.8% (P=0.07). The statistical analysis of the undiluted cultures showed the use of amphotericin B as the only independent predictor of negative culture (P<0.001).
Conclusions: The efficacy of amphotericin B is well known for the treatment of histoplasmosis, though we could not demonstrate that caspofungin is better than control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.riam.2011.03.006 | DOI Listing |
Animal
December 2024
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:
Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.
View Article and Find Full Text PDFPLoS One
January 2025
Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.
Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.
Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.
PLoS One
January 2025
Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.
View Article and Find Full Text PDFStem Cells Transl Med
January 2025
Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.
View Article and Find Full Text PDFJ Physiol
January 2025
Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!