Background: In humans, myocardial infarction is characterized by irreversible loss of heart tissue, which becomes replaced with a fibrous scar. By contrast, teleost fish and urodele amphibians are capable of heart regeneration after a partial amputation. However, due to the lack of a suitable infarct model, it is not known how these animals respond to myocardial infarction.
Results: Here, we have established a heart infarct model in zebrafish using cryoinjury. In contrast to the common method of partial resection, cryoinjury results in massive cell death within 20% of the ventricular wall, similar to that observed in mammalian infarcts. As in mammals, the initial stages of the injury response include thrombosis, accumulation of fibroblasts and collagen deposition. However, at later stages, cardiac cells can enter the cell cycle and invade the infarct area in zebrafish. In the subsequent two months, fibrotic scar tissue is progressively eliminated by cell apoptosis and becomes replaced with a new myocardium, resulting in scarless regeneration. We show that tissue remodeling at the myocardial-infarct border zone is associated with accumulation of Vimentin-positive fibroblasts and with expression of an extracellular matrix protein Tenascin-C. Electrocardiogram analysis demonstrated that the reconstitution of the cardiac muscle leads to the restoration of the heart function.
Conclusions: We developed a new cryoinjury model to induce myocardial infarction in zebrafish. Although the initial stages following cryoinjury resemble typical healing in mammals, the zebrafish heart is capable of structural and functional regeneration. Understanding the key healing processes after myocardial infarction in zebrafish may result in identification of the barriers to efficient cardiac regeneration in mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078894 | PMC |
http://dx.doi.org/10.1186/1471-213X-11-21 | DOI Listing |
J Formos Med Assoc
January 2025
Department of Cardiovascular medicine, Yunnan First People's Hospital, Affiliated Hospital of Kunming University of Science and Technology, Yunnan, China. Electronic address:
Urol Oncol
January 2025
Department of Rheumatology, Stanford University Medical Center, CA.
Background: Prostate cancer treatment involves hormonal therapies that may carry cardiovascular risks, particularly for long-term use. Gonadotropin-releasing hormone (GnRH) antagonists, such as degarelix, may offer advantages over agonists, but comprehensive comparative cardiovascular outcomes are not well established. This study aimed to systematically review and analyze the cardiovascular safety profiles of degarelix compared to those of traditional GnRH agonists, providing critical insights for optimizing treatment strategies.
View Article and Find Full Text PDFAtherosclerosis
December 2024
Center for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Sweden; University Clinic Primary Care Skåne, Region Skåne, Sweden; Department of Family and Community Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA.
Background And Aims: Environmental and genetic factors predispose to cardiovascular disease. Some first-generation immigrants have a higher cardiovascular risk in Sweden, while less is known about second-generation immigrants. We aimed to analyze the risk of acute myocardial infarction (AMI) among second-generation immigrants in Sweden.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Center for Molecular Medicine, Maine Health Institute for Research, 81 Research Drive, Scarborough, ME, USA.
Hepatic stores of Vitamin A (retinol) are mobilized and metabolized in the heart following myocardial infarction. The physiological consequences of this mobilization are poorly understood. Here we used dietary depletion in a lecithin retinol acyltransferase mutant mouse line to induce Vitamin A deficiency and investigate the effects on cardiac function and recovery from myocardial infarction.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2025
Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.
Areas Covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!