Collision-induced dissociation (CID) and electron-induced dissociation (EID) have been investigated for a selection of small, singly charged organic molecules of pharmaceutical interest. Comparison of these techniques has shown that EID carried out on an FTICR MS and CID performed on a linear ion trap MS produce complementary data. In a study of 33 molecule-cations, EID generated over 300 product ions compared to 190 product ions by CID with an average of only 3 product ions per precursor ion common to both tandem MS techniques. Even multiple stages of CID failed to generate many of the product ions observed following EID. The charge carrying species is also shown to have a very significant effect on the degree of fragmentation and types of product ion resulting from EID. Protonated species behave much like the ammonium adduct with suggestion of a hydrogen atom from the charge carrying species strongly affecting the fragmentation mechanism. Sodium and potassium are retained by nearly every product ion formed from [M + Na](+) or [M + K](+) and provide information to complement the EID of [M + H](+) or [M + NH(4)](+). In summary, EID is proven to be a fitting partner to CID in the structural elucidation of small singly charged ions and by studying EID of a molecule-ion holding different charge carrying species, an even greater depth of detail can be obtained for functional groups commonly used in synthetic chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac200045n | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).
Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFNat Geosci
December 2024
Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France.
Saturn's rings have been estimated to be as young as about 100 to 400 million years old according to the hypothesis that non-icy micrometeoroid bombardment acts to darken the rings over time and the Cassini observation indicated that the ring particles appear to be relatively clean. These young age estimates assume that the rings formed out of pure water ice particles with a high accretion efficiency of impacting non-icy micrometeoroid material ( ≳ 10%). Here we show, using numerical simulations of hypervelocity micrometeoroid impacts on a ring particle, that non-icy material may not be as readily accreted as previously thought.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India.
This study focuses on enhancing the performance of photodetector through the utilization of inorganic perovskite material. It emphasizes that the unique properties of perovskite materials contribute to the superior performance of the photodetector. The focus is on the design and enhancement of CsSnI-based photodetector having graphene oxide (GO) and PCBM as charge transport layer, analysing their potential for improved operation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!