Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H(2)PO(4) radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-011-0083-2DOI Listing

Publication Analysis

Top Keywords

charge-reduced ions
12
phosphoric acid
12
phosphorylated pentapeptides
8
electron transfer
8
doubly charged
8
charged ions
8
dissociations charge-reduced
8
ion trap
8
loss hydrogen
8
hydrogen atom
8

Similar Publications

Proteo-SAFARI is a shiny application for fragment assignment by relative isotopes, an R-based software application designed for identification of protein fragment ions directly in the / domain. This program provides an open-source, user-friendly application for identification of fragment ions from a candidate protein sequence with support for custom covalent modifications and various visualizations of identified fragments. Additionally, Proteo-SAFARI includes a nonnegative least-squares fitting approach to determine the contributions of various hydrogen shifted fragment ions ( + 1, + 1, - 1, - 2) observed in UVPD mass spectra which exhibit overlapping isotopic distributions.

View Article and Find Full Text PDF

Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits.

View Article and Find Full Text PDF

To 200,000 / and Beyond: Native Electron Capture Charge Reduction Mass Spectrometry Deconvolves Heterogeneous Signals in Large Biopharmaceutical Analytes.

ACS Cent Sci

August 2024

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.

Great progress has been made in the detection of large biomolecular analytes by native mass spectrometry; however, characterizing highly heterogeneous samples remains challenging due to the presence of many overlapping signals from complex ion distributions. Electron-capture charge reduction (ECCR), in which a protein cation captures free electrons without apparent dissociation, can separate overlapping signals by shifting the ions to lower charge states. The concomitant shift to higher / also facilitates the exploration of instrument upper / limits if large complexes are used.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomics has gained significance in recent decades, with a focus on identifying intact proteins, primarily using high-resolution mass spectrometry, leading to challenges in low-resolution methods.
  • Our study explored a combined method using collision-induced dissociation (CID) and electron transfer without dissociation (ETnoD) to identify intact proteins, specifically testing with myoglobin.
  • We developed a protocol called CID/ETnoD that enables sequence identification and validation of multiple intact proteins by generating stable product ions and analyzing them through multistage activation.
View Article and Find Full Text PDF

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Nissle and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!