Calcineurin and its downstream effectors nuclear factor of activated T-cells 3 (NFAT3) and zinc finger-containing transcription factor (GATA4) have been implicated in the development of cardiac hypertrophy. The aims of the present study were to investigate alterations in the calcineurin/NFAT3/GATA4 pathway in pressure-overload hypertrophy, and to determine whether adrenergic receptor blockade affects this signaling pathway. In aorta-banded rats compared with sham-operated rats, a significant increase in the phosphorylation levels of calcineurin and GATA4 was observed (both p<0.05), while the NFAT3 phosphorylation level was markedly decreased (p<0.05). Oral administration of either the non-selective β blocker/α-1 blocker carvedilol or the selective β-1 blocker metoprolol, but not the selective α-1 blocker terazosin, significantly suppressed the activated calcineurin/NFAT3/GATA4 pathway (all p<0.05) in addition to inducing a regression of cardiac hypertrophy. Pressure overload-induced up-regulation of c-myc was markedly attenuated by treatment with either carvedilol or metoprolol (both p<0.05). The present findings may expand our understanding of the correlation between sympathetic activity and the calcineurin/NFAT3/GATA4 pathway, and highlight these signal transducers as effective targets in the management of pressure overload-induced cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr_00000287 | DOI Listing |
Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Learn Mem
January 2025
Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
Stressful and emotionally arousing experiences induce the release of noradrenergic and glucocorticoid hormones that synergistically strengthen memories but differentially regulate qualitative aspects of memory. This highlights the need for sophisticated behavioral tasks that allow for the assessment of memory quality. The dual-event inhibitory avoidance task for rats is such a behavioral task designed to evaluate both the strength and specificity of memory.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
January 2025
CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
This study evaluated initial antihypertensive drug prescription patterns in Indian healthcare settings. An observational, cross-sectional, prospective prescription registry analyzed prescriptions for 4723 newly diagnosed hypertension patients. Additionally, it investigated the extent to which physicians adhered to either European or Indian hypertension guidelines.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Biochemistry, Faculty of Veterinary Medicine, Erzurum, Turkey.
Background: Isoproterenol (ISO) is a nonselective beta-adrenergic receptor agonist known for its vasodilatory effects. This experiment aims to investigate whether intrauterine ISO administration could alter vascular indices and follicular development in postpartum Holstein cows.
Objectives: The objectives are to evaluate the effects of intrauterine ISO administration on vascular changes and its impact on follicular development compared to placebo groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!