Sphingosine-1 phosphate receptor (S1PR) has come to the fore as a mediator of extracellular signaling through its interaction with G-protein-coupled receptors, which results in the induction of peripheral T-cell depletion. The mechanisms involved in renal ischemia-reperfusion (I/R) injury are complex, but appear to involve the early participation of bone marrow-derived cells, such as T lymphocytes. In this study, we investigated the expression of SIPR in a rat model of renal I/R injury. By means of a laparotomy, the right kidney was harvested and the left renal artery and vein were clamped. The kidney was reperfused after 90 min of ischemia, and rats were sacrificed at 0, 3, 6, 12 and 24 h after reperfusion. S1PR expression was analyzed by immunohistochemistry, and was observed only in endothelial cells of the normal kidneys. From 0 to 3 h after reperfusion, S1PR expression gradually became stronger in endothelial cells, reaching its peak intensity at 3 h after reperfusion. Twelve hours after reperfusion, necrosis had extended throughout the ischemic kidney, and nearly all the tubular epithelial cells had been destroyed. From 3 to 12 h after reperfusion, S1PR expression gradually weakened. At 24 h after reperfusion, levels of S1PR expression had almost reached those of the normal kidneys. In conclusion, S1PR was found to be expressed in a rat model of renal I/R injury. Several hours after achieving the maximum level of S1PR expression, the maximum level of renal I/R injury was observed. These results suggest a relationship between S1PR and renal I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr_00000245DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
s1pr expression
20
renal i/r
16
reperfusion s1pr
12
sphingosine-1 phosphate
8
phosphate receptor
8
renal ischemia-reperfusion
8
s1pr
8
rat model
8
model renal
8

Similar Publications

Myocardial ischemia/reperfusion (I/R)-induced cell death, such as autophagy and ferroptosis, is a major contributor to cardiac injury. Regulating cell death may be key to mitigating myocardial ischemia/reperfusion injury (MI/RI). Autophagy is a crucial physiological process involving cellular self-digestion and compensation, responsible for degrading excess or malfunctioning long-lived proteins and organelles.

View Article and Find Full Text PDF

Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation.

View Article and Find Full Text PDF

Interleukin-34 (IL-34) was recently reported to be a new biomarker for atherosclerosis diseases, such as coronary artery disease and vascular dementia. IL-34 regulates the expression of proinflammatory cytokines (IL-17A, IL-1 and IL-6), which are classical cytokines involved in myocardial ischemia‒reperfusion (MI/R) injury. However, the exact role of IL-34 in MI/R remains unknown.

View Article and Find Full Text PDF

Awaiting insurance coverage: Medicaid enrollment and post-acute care use after traumatic injury.

J Trauma Acute Care Surg

January 2025

From the Section of Trauma and Acute Care Surgery, Department of Surgery (D.N.H., J.S.H.), University of Chicago, Chicago, Illinois; Perelman School of Medicine (E.C.E., A.T.C., O.I.R., A.U.M., M.K.D., N.D.M., M.J.S., E.J.K.), Division of Trauma, Surgical Critical Care and Emergency Surgery (K.M.C., N.D.M., M.J.S., E.J.K.), University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Surgery (L.M.K.), Stanford University, Stanford, California.

Background: Lack of insurance after traumatic injury is associated with decreased use of postacute care and poor outcomes. Insurance linkage programs enroll eligible patients in Medicaid at the time of an unplanned admission. We hypothesized that Medicaid enrollment would be associated with increased use of postacute care, but also with prolonged hospital length of stay (LOS) while awaiting insurance authorization.

View Article and Find Full Text PDF

Piceatannol upregulates USP14-mediated GPX4 deubiquitination to inhibit neuronal ferroptosis caused by cerebral ischemia-reperfusion in mice.

Food Chem Toxicol

January 2025

Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China. Electronic address:

Ischemic stroke is a very common brain disorder. This study aims to assess the neuroprotective effects of piceatannol (PCT) in preventing neuronal injury resulting from cerebral ischemia and reperfusion (I/R) in mice. Additionally, we investigated the underlying mechanisms through which PCT inhibits neuronal ferroptosis by modulating the USP14/GPX4 signaling axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!