Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on the rigorous consideration of the bond broken rule and surface relaxation, a model for the size-dependent surface free energy of face-centered-cubic nanoparticles and nanocavities is presented, where the surface relaxation is calculated by the BOLS relationship. It is found that the surface free energy of nanoparticles and nanocavities represents a reverse size effect-the surface free energy of nanoparticles decreases with the decrease of particle size while it rises with the shrinkage of cavities. The size effect on the surface free energy of nanoparticles and nanocavities is not evident in large size ranges, while it becomes more and more distinct with decreasing size, especially for sizes smaller than 10 nm. The present predictions are in good agreement with the available literature data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp02102d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!