A micelle-mediated extraction technique, i.e. ionic liquid-based microwave-assisted extraction (ILs-MAE) technique has been developed for the effective extraction of podophyllotoxin from three Chinese medicinal plants. Several operating parameters were successively optimized by single-factor and L(9) (3(4)) orthogonal array experiments. 1-Butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), 1-decyl-3-methylimidazolium tetrafluoroborate ([demim][BF(4)]) and 1-allyl-3-methylimidazolium tetrafluoroborate ([amim][BF(4)]) were selected as the optimal surfactants for Dysosma versipellis, Sinopodophyllum hexandrum and Diphylleia sinensis, respectively. Compared with other extraction techniques, such as ionic liquids-based maceration extraction (ILs-ME), heat extraction (ILs-HE) and ultrasound-assisted extraction (ILs-UAE), the ILs-MAE technique not only took a shorter time but also afforded a higher extraction rate of podophyllotoxin from the herbs. Reversed phase high performance liquid chromatography was employed for the analysis of podophyllotoxin. The results showed that the linearity for analyzing podophyllotoxin in all three herbs was in the concentration range of 0.005-0.4 mg mL(-1) with the correlation coefficient between 0.9993 and 0.9996. LODs were 2.05-2.58 μg mL(-1) and RSDs of inter-day stability were less than 5.8%. Repeatability and intermediate precision were separately lower than 3.3% and 6.3%. The recoveries for podophyllotoxin extracted with the ILs-MAE technique were in the range of 97.1-102% and all RSDs were lower than 3.0%. Furthermore, the mechanism of ILs-MAE was preliminarily studied by means of kinetic mechanism, surface structures and chemical compositions of samples before and after different extraction techniques. On the basis of the destruction of herb surface microstructures and high solubility of ILs, the ILs-MAE technique eventually got the maximum yield value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0an00864h | DOI Listing |
Molecules
April 2017
School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563003, China.
As new green solvents, ionic liquids (ILs) have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE) was firstly employed to extract total biflavonoids from . Based on single-factor experiment, microwave power (300-700 W), extract time (30-50 min) and extract temperature (40-60 °C) on total bioflavonoids and antioxidant activities of the extracts were further investigated by a Box-Behnken design of response surface methodology (RSM) selecting total bioflavonoids yields and IC of radical scavenging as index.
View Article and Find Full Text PDFAnalyst
June 2011
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!