We have recently demonstrated that indentation-type atomic force microscopy (IT-AFM) is capable of detecting early onset osteoarthritis (OA) (Stolz, 2009). This study was based on biopsies, using a desk-top commercial atomic force microscope (AFM). However, cartilage analysis in the knee joints needs to be non-destructive to avoid new seeding points for OA by the taking of biopsies. This requires bringing the probe tip in contact with the articular cartilage (AC) surface inside the joint. Here we present our recent progress towards a medical instrument for performing such IT-AFM measurements for in-vivo knee diagnostics. The scanning force arthroscope (SFA) integrates a miniaturized AFM into a standard arthroscopic sleeve, and is used for direct, quantitative, in situ inspection of AC (Imer et al., 2006). The stabilization and the positioning of the instrument relative to the surface under investigation were performed by means of eight inflatable balloons. An integrated three-dimensional, piezoelectric scanner allowed raster scanning and probing of a small area of cartilage around the point of insertion. An AFM probe with an integrated deflection sensor was mounted at the distal end of the instrument. Using this instrument, several measurements were performed on agarose gel and on porcine cartilage samples. The load-displacement curves obtained were analyzed and the dynamic elastic moduli | E(*) | were calculated. A good correlation between these values and those published in the scientific literature was found. Therefore, we concluded that the SFA can provide quantitative measurements to detect early pathological changes in OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1679/aohc.72.251 | DOI Listing |
Pharmaceutics
January 2025
Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.
Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Sanderson Building, King's Buildings, Edinburgh EH9 3FB, UK.
The phase separation of high-density polyethylene (HDPE)-polypropylene (PP) blends was studied using atomic force microscopy in tapping mode to obtain height and phase images. The results are compared with those from scanning electron microscopy imaging and are connected to the thermomechanical properties of the blends, characterised through differential scanning calorimetry, dynamic mechanical analysis (DMA), and tensile testing. Pure PP, as well as 10:90 and 20:80 weight ratio HDPE-PP blends, showed a homogeneous morphology, but the 25:75 HDPE-PP blends exhibited a sub-micrometre droplet-matrix structure, and the 50:50 HDPE-PP blends displayed a more complex co-continuous nano/microphase-separated structure.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!