Earlier findings had suggested that spontaneous and evoked glutamate release activates non-overlapping populations of NMDA receptors. Here, we evaluated whether AMPA receptor populations activated by spontaneous and evoked release show a similar segregation. To track the receptors involved in spontaneous or evoked neurotransmission, we used a polyamine agent, philanthotoxin, that selectively blocks AMPA receptors lacking GluR2 subunits in a use-dependent manner. In hippocampal neurons obtained from GluR2-deficient mice, philanthotoxin application decreased AMPA-receptor-mediated spontaneous miniature EPSCs (AMPA-mEPSCs) down to 20% of their initial level within 5 min. In contrast, the same philanthotoxin application at rest decreased the subsequent AMPA-receptor-mediated evoked EPSCs (eEPSCs) only down to 80% of their initial value. A 10-min-long perfusion of philanthotoxin further decreased AMPA-eEPSC amplitudes to 60% of their initial magnitude, which remained substantially higher than the level of AMPA-mEPSC block achieved within 5 min. Finally, stimulation after removal of philanthotoxin resulted in reversal of AMPA-eEPSC block, verifying strict use dependence of philanthotoxin. These results support the notion that spontaneous and evoked neurotransmission activate distinct sets of AMPA receptors and bolster the hypothesis that synapses harbor separate microdomains of evoked and spontaneous signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086544PMC
http://dx.doi.org/10.1523/JNEUROSCI.5234-10.2011DOI Listing

Publication Analysis

Top Keywords

spontaneous evoked
20
ampa receptor
8
evoked neurotransmission
8
ampa receptors
8
philanthotoxin application
8
spontaneous
7
evoked
7
philanthotoxin
6
use-dependent ampa
4
receptor block
4

Similar Publications

Small fiber pathology in fibromyalgia syndrome.

Pain Rep

February 2025

Department of Neurology, University Hospital Würzburg, Würzburg, Germany.

About 50% of women with fibromyalgia syndrome have reduced skin innervation. This finding is consistent in patient cohorts from different regions of the world. Small fiber function may also be affected, as shown by various studies using different methods, such as quantitative sensory testing or special small fiber neurophysiology such as C-fiber microneurography.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.

View Article and Find Full Text PDF

Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!