Recombination in natural populations of watermelon mosaic virus: new agronomic threat or damp squib?

J Gen Virol

INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.

Published: August 2011

Since their introduction in south-eastern France around 1999, new, 'emerging' (EM) strains of watermelon mosaic virus (WMV) coexist with the 'classic' (CL) strains present for more than 40 years. This situation constitutes a unique opportunity to estimate the frequency of recombinants appearing in the few years following introduction of new strains of a plant RNA virus. Molecular analyses performed on more than 1000 isolates from epidemiological surveys (2004-2008) and from experimental plots (2009-2010), and targeting only recombinants that became predominant in at least one plant, revealed at least seven independent CL/EM or EM/EM recombination events. The frequency of recombinants involving at least one EM parent in the natural populations tested was on the order of 1 %. No new recombinant was detected for more than 1 year, and none but one in more than one location. In tests comparing host range and aphid transmissibility, the new recombinants did not display a better fitness than their 'parental' isolates. No recombinant was detected from artificial mixed infections of CL and EM isolates of various hosts after testing more than 1500 subcultures obtained after single-aphid transmission. These results constitute one of the first estimations of the frequency of recombinants in natural conditions for a plant RNA virus. This suggests that although viable recombinants of WMV are not rare, and although recombination may potentially lead to new highly damaging strains, the new recombinants observed so far had a lower fitness than the parental strains and did not emerge durably in the populations.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.031401-0DOI Listing

Publication Analysis

Top Keywords

frequency recombinants
12
natural populations
8
watermelon mosaic
8
mosaic virus
8
plant rna
8
rna virus
8
recombinant detected
8
recombinants
7
strains
5
recombination natural
4

Similar Publications

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.

View Article and Find Full Text PDF

We theoretically study high-order harmonic generation (HHG) involving an extreme ultraviolet (XUV) pulse and an intense infrared driving field, where the electron is ionized by absorbing a single XUV photon. Using a developed classical-trajectory model that includes Coulomb effects and the improved initial conditions, it is demonstrated that the resulting harmonic emission times match well with those obtained by applying the Gabor transform to data from numerical solutions of time-dependent Schrödinger equations for helium and hydrogen atoms. This confirms a classical HHG scheme under single-photon ionization: The electron, ionized by absorbing one XUV photon, oscillates in the infrared field and may recollide with the parent ion, emitting high-frequency radiation.

View Article and Find Full Text PDF

We report on the design of an all-mirror wavefront-division interferometer capable of spectroscopic studies across multiple spectral ranges-from the plasma frequencies of metals to terahertz wavelengths and beyond. The proposed method leverages the properties of laser sources with high spatial coherence. A theoretical framework for the interferometer scheme is presented, along with an analytical solution for determining the far-field interference pattern, which is validated through both optical propagation simulations and experimental results.

View Article and Find Full Text PDF

Introduction: Molecular surveillance is an important tool for detecting chains of transmission and controlling the HIV epidemic. This can also improve our knowledge of molecular and epidemiological factors for the optimization of prevention. Our objective was to illustrate this by studying the molecular and epidemiological evolution of the cluster including the new circulating recombinant form (CRF) 94_cpx of HIV-1, detected in 2017 and targeted by preventive actions in 2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!