In budding yeast, the Ndt80 protein is a meiosis-specific transcription factor that is essential for the exit of pachytene and progression into nuclear divisions and spore formation. The pachytene checkpoint responds to defects in meiotic recombination and chromosome synapsis and negatively regulates the activity of Ndt80. The activity of Ndt80 was suggested to be regulated at both transcriptional and posttranslational levels; however, the mechanism for posttranslational regulation of Ndt80 was unclear. From a study of ndt80 in-frame deletion mutations, we have identified a dominant mutation NDT80-bc, which is able to completely bypass the pachytene checkpoint. The NDT80-bc mutation relieves the checkpoint-mediated arrest of the zip1, dmc1, and hop2 mutants, producing spores with low viability. The NDT80-bc mutant provides direct evidence for the posttranslational control of Ndt80 activity. Furthermore, the data presented show that Ndt80 is retained in cytoplasm in the zip1 mutant, whereas Ndt80-bc is found in the nucleus. We propose that the nuclear localization of Ndt80 is regulated by the pachytene checkpoint through a cytoplasmic anchor mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103403 | PMC |
http://dx.doi.org/10.1091/mbc.E10-12-1011 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China. Electronic address:
Arsenic is a pollutant that can cross the placenta; however, research on the effects of arsenic exposure during pregnancy on the fertility of female offspring is limited. To address this gap, we developed a mouse model to investigate the relationship between arsenic exposure during pregnancy and fertility in female offspring. Our fertility assessment revealed that gestational exposure to 1 mg/kg arsenic or higher (10 mg/kg) resulted in reduction in litter size, ovarian volume, and multistage-follicle number in female offspring.
View Article and Find Full Text PDFBiol Lett
September 2024
Department of Ecology, Faculty of Science, Charles University, Prague, Viničná 7 128 44, Czech Republic.
Among vertebrates, obligate parthenogenesis occurs exclusively in squamate reptiles. Premeiotic endoreplication in a small subset of developing oocytes has been documented as the mechanism of production of unreduced eggs in minutely explored obligate parthenogenetic lineages, namely in teiids and geckos. The situation in the lacertid genus has been discussed for decades.
View Article and Find Full Text PDFGenetics
September 2024
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis.
View Article and Find Full Text PDFGenetics
August 2024
Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA.
53BP1 plays a crucial role in regulating DNA damage repair pathway choice and checkpoint signaling in somatic cells; however, its role in meiosis has remained enigmatic. In this study, we demonstrate that the Caenorhabditis elegans ortholog of 53BP1, HSR-9, associates with chromatin in both proliferating and meiotic germ cells. Notably, HSR-9 is enriched on the X chromosome pair in pachytene oogenic germ cells.
View Article and Find Full Text PDFbioRxiv
May 2024
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!