Endogenous molecules from damaged tissue act as danger signals to trigger or amplify the immune/inflammatory response. In this study, we examined whether free heme induced pro-inflammatory proteins in cultured cells derived from normal hearts and investigated the cells targeted by heme, together with its mechanism of action in these cells. We cultured collagenase-isolated heart-derived cells from normal rats and examined whether free heme induced pro-inflammatory proteins, reactive oxygen species (ROS) production and NF-κB activation, by quantitative RT-PCR, ELISA and flow cytometry. Free heme increased mRNA of various pro-inflammatory proteins in cultured cardiac resident cells (CCRC) (at least 100-fold) and induced intracellular ROS formation. Approximately 85-90% of CCRC are fibroblast/smooth muscle cells and 10-15% are CD11bc-positive macrophages; therefore to examine individual target cells, macrophage-deleted (CD11bc-negative) CCRC, primary cultured cells (cardiac fibroblasts, arterial smooth muscle cells and cardiac microvascular endothelial cells) and macrophage cells lines (NR8383) were similarly treated. Free heme activated NF-κB and induced expression of some pro-inflammatory proteins, including IL-1 and TNF-α in NR8383. On the other hand, macrophage-deleted CCRC strongly increased expression of these proteins on treatment with IL-1 or TNF-α, but not free heme. Induction of expression of pro-inflammatory proteins by free heme was not inhibited by intracellular ROS reduction, but by protease and proteasome inhibitors capable of regulating NF-κB. These data suggest that free heme strongly induces various pro-inflammatory proteins in injured hearts through NF-κB activation in cardiac resident macrophages and through cross-talk between macrophages and fibroblast/smooth muscle cells mediated inter alia by IL-1, TNF-α.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2011.02.013 | DOI Listing |
Commun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFBiomolecules
November 2024
Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea.
Destabilization of heme proteins is recognized to play a role in acute kidney injury (AKI). Hemopexin (Hpx), known for its role in binding heme, mitigates free heme toxicity. Despite this, the potential adverse effects of Hpx deposition in kidney tissues and its impact on kidney function are not fully understood.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China.
This article aims to investigate the mechanism by which alleviates lipopolysaccharide (LPS)-induced intestinal oxidative stress. The study involved two experimental subjects: human colorectal adenocarcinoma (Caco-2) cells and Arbor Acres broiler chickens. The experiment involving two samples was designed with the same treatment groups, specifically the control (CK) group, lipopolysaccharide (LPS) group, (JF) group, and JF+LPS group.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany. Electronic address:
Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α/βH105F and α/βH105A were valuable research tools for studying NO independent sGC activators.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!