On the mechanistic level, response of periodontal fibroblasts permanently exposed to mechanical strain forces in vivo still lacks in clarity. Therefore, we first investigated putative strain modulation of proteins by combined 1D gel electrophoresis-based protein profiling and electrospray tandem mass spectrometry (ESI-MS). Thereafter, the exponential-modified protein abundance index (emPAI) identified strain modulation of cytoskeleton-associated molecules, including decrease in talin and microtubule-associated protein 4 (MAP4), and significant increase in myosin IC (Myo IC), the latter ones regulated by Ca(2+). These findings were corroborated by western blotting (WB) and indirect immunofluorescence (IIF). Regarding the dual function of Myo IC as actin-based cytoplasmic motor protein and nuclear transcription factor NM1, WB and IIF revealed inverse correlation for Myo IC and NM1. During strain application, cytoplasmic increase of Myo IC was counteracted by nuclear NM1 deprivation, the latter coinciding with a decline in RNA quantity. Independent on strain, cytoplasmic Myo IC and nuclear NM1 abundance could be abrogated by the Ca(2+) channel blocker nifedipine, suggesting Ca(2+) dependency of cytoplasmic and/or nuclear Myo IC/NM1 expression. Mechanistically, we conclude that, application of strain appears as causative for the decline in RNA by impacting NM1, thereby indicating the possible role of NM1 in RNA synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2011.03.001 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.
View Article and Find Full Text PDFMob DNA
January 2025
Department of Biology, La Sierra University, Riverside, CA, USA.
Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad, 402103, India.
Acute lung injury i.e. ALI and its serious form acute respiratory distress syndrome (ARDS) are incurable medical conditions associated with significant global mortality and morbidity.
View Article and Find Full Text PDFBiophys J
January 2025
Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:
Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!