Family 18 chitinases catalyze the hydrolysis of β-1,4-glycosidic bonds in chitin. The mechanism has been proposed to involve the formation of an oxazolinium ion intermediate via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile (instead of an enzyme residue). Here, we have modeled the first step of the chitin hydrolysis catalyzed by Serratia marcescens chitinase B for the first time using a combined quantum mechanics/molecular mechanics approach. The calculated reaction barriers based on multiple snapshots are 15.8-19.8 kcal mol(-1) [B3LYP/6-31+G(d)//AM1-CHARMM22], in good agreement with the activation free energy of 16.1 kcal mol(-1) derived from experiment. The enzyme significantly stabilizes the oxazolinium intermediate. Two stable conformations ((4)C(1)-chair and B(3,O)-boat) of the oxazolinium ion intermediate in subsite -1 were unexpectedly observed. The transition state structure has significant oxacarbenium ion-like character. The glycosyl residue in subsite -1 was found to follow a complex conformational pathway during the reaction ((1,4)B → [(4)H(5)/(4)E](++) → (4)C(1) ↔ B(3,O)), indicating complex conformational behavior in glycoside hydrolases that utilize a substrate-assisted catalytic mechanism. The D142N mutant is found to follow the same wild-type-like mechanism: the calculated barriers for reaction in this mutant (16.0-21.1 kcal mol(-1)) are higher than in the wild type, in agreement with the experiment. Asp142 is found to be important in transition state and intermediate stabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi101362gDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
12
quantum mechanics/molecular
8
mechanics/molecular mechanics
8
family chitinases
8
oxazolinium ion
8
ion intermediate
8
transition state
8
complex conformational
8
mechanics modeling
4
modeling substrate-assisted
4

Similar Publications

In this study, three pyridine- and four thiophene-containing chalcone derivatives were synthesized via Claisen-Schmidt condensation reaction, where five derivatives were new. Different spectral analyses (IR, H NMR, HRMS) clarified the structures and these proposed compounds were screened for antimicrobial activity by the agar disc diffusion technique. Compound was conspicuously active against most of the bacterial and fungal strains.

View Article and Find Full Text PDF

DFT calculations were performed to investigate the possible reaction mechanisms underlying catalyst-free chloroboration reactions of carbonyl compounds with BCl. The interaction between BCl and the C[double bond, length as m-dash]O moiety of carbonyl compounds is a two-step reaction. In the first step, B of BCl forms a bond with the O of the C[double bond, length as m-dash]O moiety, followed by the 1,3-Cl migration process from BCl to the C of the carbonyl group.

View Article and Find Full Text PDF

Using methods of DFT, we investigated the effect of electron withdrawing and electron donating groups on the relative stability of tentative glycosyl donor reaction intermediates. The calculation shows that by changing the stereoelectronic properties of the protecting group, we can influence the stability of the dioxolenium type of intermediates by up to 10 kcal mol, and that by increasing nucleophillicity of the 4--Bz group, the dioxolenium intermediate becomes more stable than a triflate-donor pair. We exploited this mechanism to design galactosyl donors with custom protecting groups on O2 and O4, and investigated the outcome of the reaction with cyclohexanol.

View Article and Find Full Text PDF

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!