A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estrogen reduces cellular aging in human mesenchymal stem cells and chondrocytes. | LitMetric

AI Article Synopsis

  • Chondrocyte aging leads to cartilage degeneration, and senescence reduces the healing ability of mesenchymal stem cells (MSCs).
  • Estrogen significantly impacts MSCs and articular cartilage, with findings showing that premenopausal levels of 17β-estradiol (E(2)) slow down telomere shortening in MSCs and chondrocytes, while postmenopausal levels do not.
  • Despite E(2) reducing telomere shortening, it cannot stop somatic cells from entering senescence, suggesting that changes in estrogen levels may contribute to the onset of osteoarthritis in women post-menopause.

Article Abstract

Chondrocyte aging is associated with cartilage degeneration and senescence impairs the regenerative potential of mesenchymal stem cells (MSCs). Estrogen exerts profound effects on human physiology including articular cartilage and MSCs. The present study should analyze the effects of pre- and postmenopausal estrogen concentrations on chondrogenic cells. Physiologic premenopausal concentrations of 17β-estradiol (E(2)) significantly decelerated telomere attrition in MSCs and chondrocytes while postmenopausal E(2) concentration had no significant effects. The estrogen agonist-antagonist tamoxifen did not affect telomere biology, but inhibited the E(2) -stimulated reduction in telomere shortening. E(2) and tamoxifen did not influence cell proliferation, cell morphology, and β-galactosidase staining in chondrogenic cells. E(2) treatment did not affect the telomere-associated proteins TRF1 and TRF2. E(2) had no regulatory effects on the expression rates of the cell cycle regulator p21 and the DNA repair proteins SIRT1 and XRCC5. In spite of reducing telomere shortening in aging MSCs and chondrocytes, estrogen is not able to prevent somatic cells from replicative exhaustion and from finally entering senescence. The fade of telomere shortening under pre- to postmenopausal estrogen concentrations suggests, at least in part, a senescence-dependent cause for the onset of osteoarthritis in women after menopause.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.21424DOI Listing

Publication Analysis

Top Keywords

telomere shortening
12
mesenchymal stem
8
stem cells
8
pre- postmenopausal
8
postmenopausal estrogen
8
estrogen concentrations
8
chondrogenic cells
8
mscs chondrocytes
8
estrogen
6
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!