β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures.

Appl Microbiol Biotechnol

Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Monteroni, Lecce, Italy.

Published: June 2011

Artemisinin is a sesquiterpene antimalarial compound produced, though at low levels (0.1-1% dry weight), in Artemisia annua in which it accumulates in the glandular trichomes of the plant. Due to its antimalarial properties and short supply, efforts are being made to improve our understanding of artemisinin biosynthesis and its production. Native β-cyclodextrins, as well as the chemically modified heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) and 2-hydroxypropyl-β-cyclodextrins, were added to the culture medium of A. annua suspension cultures, and their effects on artemisinin production were analysed. The effects of a joint cyclodextrin and methyl jasmonate treatment were also investigated. Fifty millimolar DIMEB, as well as a combination of 50 mM DIMEB and 100 μM methyl jasmonate, was highly effective in increasing the artemisinin levels in the culture medium. The observed artemisinin level (27 μmol g(-1) dry weight) was about 300-fold higher than that observed in untreated suspensions. The influence of β-cyclodextrins and methyl jasmonate on the expression of artemisinin biosynthetic genes was also investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-011-3232-4DOI Listing

Publication Analysis

Top Keywords

methyl jasmonate
12
artemisinin production
8
artemisia annua
8
annua suspension
8
dry weight
8
culture medium
8
artemisinin
7
β-cyclodextrins enhance
4
enhance artemisinin
4
production artemisia
4

Similar Publications

Genome assembly and multi-omics analyses of Isodon lophanthodies provide insights into the distribution of medicinal metabolites induced by exogenous methyl jasmonate.

BMC Plant Biol

December 2024

Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.

Background: Isodon lophanthodies is a perennial herb and the whole plant has medicinal value distributed in southern China and southeast Asia. The absence of a reference genome has hindered evolution and genomic breeding research of this species.

Results: In this study, we present a high-quality, chromosome-level genome assembly of I.

View Article and Find Full Text PDF

Podophyllotoxin (PTOX), produced by Linum album, is a monolignol that participates in plant defense strategies. Our previous study established that methyl jasmonate (MeJA) significantly stimulates PTOX production in L. album cells.

View Article and Find Full Text PDF

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.

View Article and Find Full Text PDF

Background: Increased icariin content during the harvesting period is one of the factors limiting the quality improvement of Epimedium sagittatum, and there is currently a lack of scientific and effective biotechnological measures.

Results: In this study, we carried out experiments involving spraying different concentrations (0 µmol·L as control group, 500 µmol·L, 1000 µmol·L and 1500 µmol·L) of methyl jasmonate (MeJA) solution on E. sagittatum leaves.

View Article and Find Full Text PDF

The Xanthomonas fragariae effector XopK suppresses stomatal immunity by perturbing abscisic acid accumulation and ABA-transciptional responses in strawberry.

Plant Physiol Biochem

December 2024

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China. Electronic address:

Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!