AI Article Synopsis

  • The study aimed to explore how chitosan oligosaccharides (COS) can inhibit IL-8 production in human umbilical vein endothelial cells (HUVECs) triggered by lipopolysaccharides (LPS).
  • Various techniques, including RT-PCR, ELISA, and Western blotting, were employed to analyze IL-8 expression and the associated signaling pathways, while additional assays assessed HUVEC migration and adhesion of monocyte cells.
  • Results showed that COS significantly reduced LPS-induced IL-8 levels and hindered HUVEC migration and monocyte adhesion in a dose-dependent manner, likely by blocking key signaling pathways like p38 MAPK and PI3K/Akt.

Article Abstract

Aim: To investigate whether and how COS inhibited IL-8 production in LPS-induced human umbilical vein endothelial cells (HUVECs).

Methods: RT-PCR, enzyme-linked immunosorbent assays (ELISA) and Western blotting were used to study IL-8 expression and related signaling pathway. Wound healing migration assays and monocytic cell adhesion analysis were used to explore the chemotactic and adhesive activities of HUVECs.

Results: COS 50-200 μg/mL exerted a significant inhibitory effect on LPS 100 ng/mL-induced IL-8 expression in HUVECs at both the transcriptional and translational levels. In addition, COS 50-200 μg/mL inhibited LPS-induced HUVEC migration and U937 monocyte adhesion to HUVECs in a concentration-dependent manner. Signal transduction studies suggest that COS blocked LPS-induced activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as phosphorylation of p38 mitogen-activated protein kinase (MAPK) and phosphokinase Akt. Further, the over-expression of LPS-induced IL-8 mRNA in HUVECs was suppressed by a p38 MAPK inhibitor (SB203580, 25 μmol/L) or a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002, 50 μmol/L).

Conclusion: COS inhibited LPS-induced IL-8 expression in HUVECs through the blockade of the p38 MAPK and PI3K/Akt signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001981PMC
http://dx.doi.org/10.1038/aps.2011.10DOI Listing

Publication Analysis

Top Keywords

il-8 expression
16
lps-induced il-8
12
human umbilical
8
umbilical vein
8
vein endothelial
8
endothelial cells
8
blockade p38
8
cos inhibited
8
cos 50-200
8
50-200 μg/ml
8

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The Mucilage From the Opuntia ficus-indica (L.) Mill. Cladodes Plays an Anti-Inflammatory Role in the LPS-Stimulated HepG2 Cells: A Combined In Vitro and In Silico Approach.

Mol Nutr Food Res

January 2025

Department for Sustainability, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Roma, Italy.

The effect of a mucilage extracted from Opuntia ficus-indica (L.) Mill (OFI) cladodes was tested in lipopolysaccharide (LPS)-challenged HepG2 hepatocarcinoma cells, through a combined in vitro-in silico approach. The OFI mucilage was characterized by gas chromatography-mass spectrometry and liquid chromatography-high resolution mass spectrometry.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated.

View Article and Find Full Text PDF

High BMP7 Expression May Worsen Airway Disease in COPD by Altering Epithelial Cell Behavior.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Purpose: Airway disease is the main pathological basis of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are unknown. Bone morphogenetic protein-7 (BMP7) is a multi-functional growth factor that belongs to the transforming growth factor superfamily, which affects the regulation of proliferation, differentiation, and apoptosis. Previous research has shown that BMP7 is highly expressed in the airway epithelia of patients with COPD, but its role in airway disease has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!