Duchenne muscular dystrophy (DMD) is an inherited severe muscle wasting disorder with, thus far, no effective therapy. DMD causes respiratory and cardiac failure as well as muscle wastage. Among the various symptoms, respiratory insufficiency is a major cause of death in DMD patients at about 20 years of age. So, naturally, the improvement of respiratory function will extend the patient's life. We report here, for the first time, a sensitive procedure using whole-body plethysmography to monitor respiratory parameters detected in the utrophin/dystrophin double knockout mouse (dko mouse), showing quite similar systemic symptoms to human DMD including restrictive ventilatory impairment. Furthermore, we show that a highly efficient dystrophin-transduction to the dko's diaphragm--achieved by simple intraperitoneal injection of a helper-dependent adenovirus vector (HDAdv) containing the full-length dystrophin expression cassette--provided beneficial results. In spite of dystrophin expression only in the diaphragm, this focal gene transfer could result in the rescue from ventilatory impairment (increased tidal volume (TV) and improvement of compensatory hyperpnea). Our result suggests that a DMD patient's mortal ventilatory impairment may be improved via technically easy means through the intraperitoneal injection of HDAdv.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129567 | PMC |
http://dx.doi.org/10.1038/mt.2011.58 | DOI Listing |
Respir Med
January 2025
Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
Background: The long-term evolution of COVID-19 in patients hospitalized during the pandemic's first wave remains largely unexplored. This study aimed to identify COVID-19 pulmonary phenotypes and their longitudinal patterns over a 12-month follow-up.
Methods: COVID-19 patients discharged from Pisa University Hospital (Italy) between March-September 2020, were evaluated at T3, T12, and T24 months post-discharge.
Med Sci Sports Exerc
November 2024
Department of Biomedical Sciences for Health, Università degli Studi di Milano, ITALY.
Purpose: Cigarette smoking (CS) induces systemic changes that impair cardiorespiratory and muscular function both at rest and during exercise. Although these abnormalities are reported in sedentary, middle-aged smokers (SM) with pulmonary disease, few and controversial studies focused on young, physically active SM at the early stage of smoking history. This study aimed at assessing the impact CS on cardiorespiratory and metabolic response during an incremental test and the subsequent recovery in young, physically active SM without known lung or cardiovascular disease.
View Article and Find Full Text PDFMed Sci Sports Exerc
November 2024
Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM.
Background: Sleeping at altitude is highly common in athletes as an integral part of altitude training camps or sport competitions. However, concerns have been raised due to expected negative effects on sleep quality, thereby potentially hampering exercise recovery and next-day exercise performance. We recently showed that ketone ester (KE) ingestion beneficially impacted sleep following strenuous, late evening exercise in normoxia, and alleviated hypoxemia.
View Article and Find Full Text PDFHeart
December 2024
Centro Cardiologico Monzino, IRCCS, Milan, Italy.
Background: Little evidence is available about heart rate (HR) response to exercise as well as its relationship with functional capacity in amyloid cardiomyopathy. Then, in a multicentre cohort of patients with amyloid cardiomyopathy, we investigated the prevalence of chronotropic incompetence (CI) and its relationships with cardiopulmonary exercise testing (CPET) variables.
Methods: Data from 172 outpatients with amyloid cardiomyopathy who performed a maximal CPET and who had no significant rhythm disorders were analysed.
Clin Radiol
December 2024
São Paulo State University (UNESP), Medical School, Botucatu, Brazil. Electronic address:
Aim: To enhance the understanding of COVID-19 regional lung damage pattern by analyzing the organ in subregions, beyond the typical lobe segmentation.
Materials And Methods: This study used semiautomatic computed tomography (CT) imaging segmentation and quantification to investigate regional lung impairments in patients with COVID-19. Each lung was divided into 12 regions, and the anatomical impairments obtained from the CT image (emphysema, ground glass opacity, and collapsed tissue) were quantified.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!