Duchenne muscular dystrophy (DMD) is an inherited severe muscle wasting disorder with, thus far, no effective therapy. DMD causes respiratory and cardiac failure as well as muscle wastage. Among the various symptoms, respiratory insufficiency is a major cause of death in DMD patients at about 20 years of age. So, naturally, the improvement of respiratory function will extend the patient's life. We report here, for the first time, a sensitive procedure using whole-body plethysmography to monitor respiratory parameters detected in the utrophin/dystrophin double knockout mouse (dko mouse), showing quite similar systemic symptoms to human DMD including restrictive ventilatory impairment. Furthermore, we show that a highly efficient dystrophin-transduction to the dko's diaphragm--achieved by simple intraperitoneal injection of a helper-dependent adenovirus vector (HDAdv) containing the full-length dystrophin expression cassette--provided beneficial results. In spite of dystrophin expression only in the diaphragm, this focal gene transfer could result in the rescue from ventilatory impairment (increased tidal volume (TV) and improvement of compensatory hyperpnea). Our result suggests that a DMD patient's mortal ventilatory impairment may be improved via technically easy means through the intraperitoneal injection of HDAdv.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129567PMC
http://dx.doi.org/10.1038/mt.2011.58DOI Listing

Publication Analysis

Top Keywords

ventilatory impairment
12
full-length dystrophin
8
utrophin/dystrophin double
8
double knockout
8
intraperitoneal injection
8
dystrophin expression
8
dmd
5
rescue respiratory
4
respiratory dysfunction
4
dysfunction transduction
4

Similar Publications

COVID-19 Pulmonary Phenotypes and Longitudinal Patterns in the First Wave of the Pandemic.

Respir Med

January 2025

Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.

Background: The long-term evolution of COVID-19 in patients hospitalized during the pandemic's first wave remains largely unexplored. This study aimed to identify COVID-19 pulmonary phenotypes and their longitudinal patterns over a 12-month follow-up.

Methods: COVID-19 patients discharged from Pisa University Hospital (Italy) between March-September 2020, were evaluated at T3, T12, and T24 months post-discharge.

View Article and Find Full Text PDF

Purpose: Cigarette smoking (CS) induces systemic changes that impair cardiorespiratory and muscular function both at rest and during exercise. Although these abnormalities are reported in sedentary, middle-aged smokers (SM) with pulmonary disease, few and controversial studies focused on young, physically active SM at the early stage of smoking history. This study aimed at assessing the impact CS on cardiorespiratory and metabolic response during an incremental test and the subsequent recovery in young, physically active SM without known lung or cardiovascular disease.

View Article and Find Full Text PDF

Background: Sleeping at altitude is highly common in athletes as an integral part of altitude training camps or sport competitions. However, concerns have been raised due to expected negative effects on sleep quality, thereby potentially hampering exercise recovery and next-day exercise performance. We recently showed that ketone ester (KE) ingestion beneficially impacted sleep following strenuous, late evening exercise in normoxia, and alleviated hypoxemia.

View Article and Find Full Text PDF

Background: Little evidence is available about heart rate (HR) response to exercise as well as its relationship with functional capacity in amyloid cardiomyopathy. Then, in a multicentre cohort of patients with amyloid cardiomyopathy, we investigated the prevalence of chronotropic incompetence (CI) and its relationships with cardiopulmonary exercise testing (CPET) variables.

Methods: Data from 172 outpatients with amyloid cardiomyopathy who performed a maximal CPET and who had no significant rhythm disorders were analysed.

View Article and Find Full Text PDF

Aim: To enhance the understanding of COVID-19 regional lung damage pattern by analyzing the organ in subregions, beyond the typical lobe segmentation.

Materials And Methods: This study used semiautomatic computed tomography (CT) imaging segmentation and quantification to investigate regional lung impairments in patients with COVID-19. Each lung was divided into 12 regions, and the anatomical impairments obtained from the CT image (emphysema, ground glass opacity, and collapsed tissue) were quantified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!