Current understanding of HIV-associated neurocognitive disorders pathogenesis.

Curr Opin Neurol

Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6146, USA.

Published: June 2011

Purpose Of Review: The present review discusses current concepts of HIV-associated neurocognitive disorders (HAND) in the era of antiretroviral therapy (ART). As the HIV epidemic enters its fourth decade (the second decade of ART), research must address evolving factors in HAND pathogenesis. These include persistent systemic and central nervous system (CNS) inflammation, aging in the HIV-infected brain, HIV subtype (clade) distribution, concomitant use of drugs of abuse, and potential neurotoxicity of ART drugs.

Recent Findings: Although the severest form of HAND, HIV-associated dementia (HAD), is now rare due to ART, the persistence of milder, functionally important HAND forms persist in up to half of HIV-infected individuals. HAND prevalence may be higher in areas of Africa where different HIV subtypes predominate, and ART regimens that are more effective in suppressing CNS HIV replication can improve neurological outcomes. HAND are correlated with persistent systemic and CNS inflammation, and enhanced neuronal injury due to stimulant abuse (cocaine and methamphetamine), aging, and possibly ART drugs themselves.

Summary: Prevention and treatment of HAND requires strategies aimed at suppressing CNS HIV replication and effects of systemic and CNS inflammation in aging and substance-abusing HIV populations. Use of improved CNS-penetrating ART must be accompanied by evaluation of potential ART neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683661PMC
http://dx.doi.org/10.1097/WCO.0b013e32834695fbDOI Listing

Publication Analysis

Top Keywords

cns inflammation
12
hiv-associated neurocognitive
8
neurocognitive disorders
8
art
8
persistent systemic
8
inflammation aging
8
suppressing cns
8
cns hiv
8
hiv replication
8
systemic cns
8

Similar Publications

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies.

Pharmaceuticals (Basel)

January 2025

Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.

Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited.

View Article and Find Full Text PDF

: The goal of this commentary is to highlight several key components of the inflammatory process as it relates to amyloid toxicity in Alzheimer's disease (AD), including the role of neuroinflammatory factors and peripheral inflammatory events. : Google Scholar and PubMed were used to find articles with the following keywords: Alzheimer's disease, amyloids, neuroinflammation, peripheral inflammation, microglia, cytokines, and treatments. Sources that were case reports, not peer-reviewed, or older than 30 years were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!