While radiography provides us clinically valuable information, it increases the risk of radiation exposure. Previous studies have reported great variations in radiation doses among institutions. It is concerning that radiation doses will increase and vary greatly from institution to institution when digital radiographic modalities become more common. In the present study, we measured chest and abdominal radiation doses at 10 institutions that had X-ray digital imaging systems. Differences in radiation doses among the institutions were evaluated and compared with the previous reports. The image quality at the measured radiation doses were also evaluated. The doses were measured by the same dosimeter, and the image quality at a specific dose was evaluated using the standard deviation of the digital values and Wiener spectrum. Our results indicate that the difference in radiation among institutions was approximately five-fold at a maximum and smaller than the previous reports had indicated. The image quality was improved as the dose was increased. We considered the five-fold difference to be the result of variations in optimum image quality and associated radiation doses among institutions. In summary, evaluating the radiation dose along with the image quality is important to optimize the doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.67.152 | DOI Listing |
J Med Imaging Radiat Sci
January 2025
Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Medical Imaging and Radiotherapy, Rua 5 de Outubro, S. Martinho do Bispo, Coimbra 3046-854, Portugal. Electronic address:
Background: Currently, there is an increase in procedures across various clinical specialties involving the use of ionising radiation.
Objective: The primary objective of this systematic review is to analyse and compare the existing literature regarding the effectiveness of leaded glasses for healthcare professionals.
Methods: Comprehensive literature searches were conducted for relevant studies published between 2018 and 2023 using the Scopus, PubMed, and Web of Science databases according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology.
Arch Dermatol Res
January 2025
Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Egypt.
Psoriasis is a chronic inflammatory skin condition characterized by hyperproliferation of keratinocytes and immune dysregulation. Narrow band ultraviolet B (NB-UVB) phototherapy is a common treatment for psoriasis due to its efficacy and safety profile. NOD2 is an intracellular pattern recognition receptor involved in immune responses and inflammation, and its expression is elevated in psoriatic skin.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
The Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) have been developed to manage radiation doses received in workplaces involving NORM, such as mineral extraction and processing, oil and gas production, metal recycling or water treatment facilities. This management strategy works well for most naturally occurring radioactive materials in workplaces, with the exception of radon. Radon is a naturally occurring radioactive gas generated by the decay of uranium-bearing minerals in rocks and soils.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFJ Bronchology Interv Pulmonol
April 2025
Thoracic Surgery, BASS Medical Group, Walnut Creek, CA.
Background: This study aimed to quantify radiation doses during navigational bronchoscopy procedures, comparing them with reported cohorts and evaluating the LungVision (Body Vision Medical Inc.) system's efficacy in dose reduction.
Methods: This retrospective observational study included 52 consecutive navigational bronchoscopy cases, categorized into 4 imaging groups based on the C-arm: Cios Spin (Siemens Healthineers), or OEC 9900 (GE HealthCare); and the 3D tomographic imaging algorithm: Cios Spin's onboard imaging, or LungVision's AI-driven imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!