We previously reported that caffeic acid phenethyl ester (CAPE) suppresses 3T3-L1 differentiation to adipocytes through the inhibition of peroxisome proliferator-activated receptor (PPAR) gamma, CCAAT/enhancer-binding protein (C/EBP) alpha, fatty acid synthase (Fas) and adipocytes-specific fatty acid binding protein 2 (aP2) expressions (Juman et al., Biol. Pharm. Bull., 33, 1484-1488 (2010)). In the present study, we confirmed that CAPE had inhibitory effects on increased glycerol-3-phosphate dehydrogenase (GPDH) activity and an increased insulin receptor substrate 1 (IRS-1). Our data show that treatment with 50 µM CAPE significantly reduced the levels of leptin (p<0.05), resistin (p<0.05) and tumor necrosis factor (TNF)-alpha (p<0.05) which are known to aid adipocytokines production in adipocytes. In 3T3-L1 cells, treatment of CAPE decreased the triglyceride deposition similar to resveratrol, which is known to have an inhibitory effect on 3T3-L1 differentiation to adipocytes. In conclusion, we found that CAPE suppresses the production and secretion of adipocytokines from mature adipocytes in 3T3-L1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.34.490DOI Listing

Publication Analysis

Top Keywords

caffeic acid
8
acid phenethyl
8
phenethyl ester
8
differentiation adipocytes
8
fatty acid
8
ester suppresses
4
suppresses production
4
production adipocytokines
4
adipocytokines leptin
4
leptin tumor
4

Similar Publications

Background: Caffeic acid (CA), a dietary compound, has been studied for its potential impact on inhibiting prostate cancer (PCa) growth. PCa is often associated with heightened expression of glyoxalase-1 (Glo-1), making it a target for potential therapeutic interventions. CA's mechanisms in suppressing Glo-1 expression and its effects on PCa cell proliferation are areas of interest for understanding its potential as an anticancer agent.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial and antioxidant activities of caffeic acid grafted ε-polylysine.

Int J Biol Macromol

December 2024

School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.

The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine.

View Article and Find Full Text PDF

Traditional Chinese medicine has unique advantages in preventing and treating COVID-19, and Fuzheng Jiedu decoction (FZJDD) was reported to be effective against COVID-19 in clinical trials. To investigate the potential mechanisms and material basis of FZJDD against SARS-CoV-2, we performed SARS-CoV-2 target protein inhibition analyses and a metabolite full spectrum analysis of FZJDD. Interestingly, FZJDD was found to block the binding of SARS-CoV-2 Spike protein with the receptor ACE2 and inhibit the activity of SARS-CoV-2 3CLpro.

View Article and Find Full Text PDF

Study on the formation mechanism and effective manipulation of polymorphs and solvates in Osimertinib-Caffeic acid multi-component crystal with distinct properties.

Int J Pharm

December 2024

Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!