Mouse genetic studies reveal that ascorbic acid (AA) is essential for osteoblast (OB) differentiation and that osterix (Osx) was a key downstream target of AA action in OBs. To determine the molecular pathways for AA regulation of Osx expression, we evaluated if AA regulates Osx expression by regulating production and/or actions of local growth factors and extracellular matrix (ECM) proteins. Inhibition of actions of IGFs by inhibitory IGFBP-4, BMPs by noggin, and ECM-mediated integrin signaling by RGD did not block AA effects on Osx expression in OBs. Furthermore, blockade of components of MAPK signaling pathway had no effect on AA-induced Osx expression. Because AA is required for prolyl hydroxylase domain (PHD) activity and because PHD-induced prolyl-hydroxylation targets proteins to proteosomal degradation, we next tested if AA effect on Osx expression involves activation of PHD to hydroxylate and induce ubiquitin-proteosome-mediated degradation of transcriptional repressor(s) of Osx gene. Treatment of OBs with dimethyloxallyl glycine and ethyl 3, 4-dihydroxybenzoate, known inhibitors of PHD, completely blocked AA effect on Osx expression and OB differentiation. Knockdown of PHD2 expression by Lentivirus-mediated shRNA abolished AA-induced Osx induction and alkaline phosphatase activity. Furthermore, treatment of OBs with MG115, inhibitor of proteosomal degradation, completely blocked AA effects on Osx expression. Based on these data, we conclude that AA effect on Osx expression is mediated via a novel mechanism that involves PHD2 and proteosomal degradation of a yet to be identified transcriptional repressor that is independent of BMP, IGF-I, or integrin-mediated signaling in mouse OBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459927 | PMC |
http://dx.doi.org/10.1152/physiolgenomics.00229.2010 | DOI Listing |
Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of dental materials, Faculty of Dentistry Medicine, Universitas Airlangga, Indonesia.
Environ Toxicol
November 2024
Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
The glutamatergic signaling pathway, which is mediated by N-methyl-D-aspartate (NMDA) receptors, is crucial for osteoblast differentiation and bone function. Dextromethorphan (DXM), a widely used antitussive, is a noncompetitive antagonist of the NMDA receptor. However, the effects of DXM on osteoblast and bone regeneration remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China. Electronic address:
Bone defects have always been a difficult problem in clinical practice. Taxifolin (TAX) is beneficial to bone regeneration. In order to obtain more attractive biomaterials, we extracted cellulose (LC) from larch sawdust and prepared a TAX-loaded hydrogel (DCT) together with L-arginine chitosan (CA).
View Article and Find Full Text PDFFront Pharmacol
October 2024
Department of Orthopedics, Peking University International Hospital, Beijing, China.
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!